ترغب بنشر مسار تعليمي؟ اضغط هنا

Benchmarking treewidth as a practical component of tensor-network--based quantum simulation

58   0   0.0 ( 0 )
 نشر من قبل Timothy Goodrich
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Tensor networks are powerful factorization techniques which reduce resource requirements for numerically simulating principal quantum many-body systems and algorithms. The computational complexity of a tensor network simulation depends on the tensor ranks and the order in which they are contracted. Unfortunately, computing optimal contraction sequences (orderings) in general is known to be a computationally difficult (NP-complete) task. In 2005, Markov and Shi showed that optimal contraction sequences correspond to optimal (minimum width) tree decompositions of a tensor networks line graph, relating the contraction sequence problem to a rich literature in structural graph theory. While treewidth-based methods have largely been ignored in favor of dataset-specific algorithms in the prior tensor networks literature, we demonstrate their practical relevance for problems arising from two distinct methods used in quantum simulation: multi-scale entanglement renormalization ansatz (MERA) datasets and quantum circuits generated by the quantum approximate optimization algorithm (QAOA). We exhibit multiple regimes where treewidth-based algorithms outperform domain-specific algorithms, while demonstrating that the optimal choice of algorithm has a complex dependence on the network density, expected contraction complexity, and user run time requirements. We further provide an open source software framework designed with an emphasis on accessibility and extendability, enabling replicable experimental evaluations and future exploration of competing methods by practitioners.



قيم البحث

اقرأ أيضاً

We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated b y Lanczos iteration. This method improves significantly both the accuracy and the efficiency of the tensor-network algorithm and allows the ground state to be determined accurately using TNS with very small virtual bond dimensions. This state contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.
126 - Bryan OGorman 2019
We present a conceptually clear and algorithmically useful framework for parameterizing the costs of tensor network contraction. Our framework is completely general, applying to tensor networks with arbitrary bond dimensions, open legs, and hyperedge s. The fundamental objects of our framework are rooted and unrooted contraction trees, which represent classes of contraction orders. Properties of a contraction tree correspond directly and precisely to the time and space costs of tensor network contraction. The properties of rooted contraction trees give the costs of parallelized contraction algorithms. We show how contraction trees relate to existing tree-like objects in the graph theory literature, bringing to bear a wide range of graph algorithms and tools to tensor network contraction. Independent of tensor networks, we show that the edge congestion of a graph is almost equal to the branchwidth of its line graph.
In the Group Steiner Tree problem (GST), we are given a (vertex or edge)-weighted graph $G=(V,E)$ on $n$ vertices, a root vertex $r$ and a collection of groups ${S_i}_{iin[h]}: S_isubseteq V(G)$. The goal is to find a min-cost subgraph $H$ that conne cts the root to every group. We consider a fault-tolerant variant of GST, which we call Restricted (Rooted) Group SNDP. In this setting, each group $S_i$ has a demand $k_iin[k],kinmathbb N$, and we wish to find a min-cost $Hsubseteq G$ such that, for each group $S_i$, there is a vertex in $S_i$ connected to the root via $k_i$ (vertex or edge) disjoint paths. While GST admits $O(log^2 nlog h)$ approximation, its high connectivity variants are Label-Cover hard, and for the vertex-weighted version, the hardness holds even when $k=2$. Previously, positive results were known only for the edge-weighted version when $k=2$ [Gupta et al., SODA 2010; Khandekar et al., Theor. Comput. Sci., 2012] and for a relaxed variant where the disjoint paths may end at different vertices in a group [Chalermsook et al., SODA 2015]. Our main result is an $O(log nlog h)$ approximation for Restricted Group SNDP that runs in time $n^{f(k, w)}$, where $w$ is the treewidth of $G$. This nearly matches the lower bound when $k$ and $w$ are constant. The key to achieving this result is a non-trivial extension of the framework in [Chalermsook et al., SODA 2017], which embeds all feasible solutions to the problem into a dynamic program (DP) table. However, finding the optimal solution in the DP table remains intractable. We formulate a linear program relaxation for the DP and obtain an approximate solution via randomized rounding. This framework also allows us to systematically construct DP tables for high-connectivity problems. As a result, we present new exact algorithms for several variants of survivable network design problems in low-treewidth graphs.
Spins based in silicon provide one of the most promising architectures for quantum computing. A scalable design for silicon-germanium quantum dot qubits is presented. The design incorporates vertical and lateral tunneling. Simulations of a four-qubit array suggest that the design will enable single electron occupation of each dot of a many-dot array. Performing two-qubit operations has negligible effect on other qubits in the array. Simulation results are used to translate error correction requirements into specifications for gate-voltage control electronics. This translation is a necessary link between error correction theory and device physics.
145 - Jose F. Fontanari 2010
We investigate the performance of a variant of Axelrods model for dissemination of culture - the Adaptive Culture Heuristic (ACH) - on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size $F$ by a B oolean Binary Perceptron. In this heuristic, $N$ agents, characterized by binary strings of length $F$ which represent possible solutions to the optimization problem, are fixed at the sites of a square lattice and interact with their nearest neighbors only. The interactions are such that the agents strings (or cultures) become more similar to the low-cost strings of their neighbors resulting in the dissemination of these strings across the lattice. Eventually the dynamics freezes into a homogeneous absorbing configuration in which all agents exhibit identical solutions to the optimization problem. We find through extensive simulations that the probability of finding the optimal solution is a function of the reduced variable $F/N^{1/4}$ so that the number of agents must increase with the fourth power of the problem size, $N propto F^ 4$, to guarantee a fixed probability of success. In this case, we find that the relaxation time to reach an absorbing configuration scales with $F^ 6$ which can be interpreted as the overall computational cost of the ACH to find an optimal set of weights for a Boolean Binary Perceptron, given a fixed probability of success.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا