ترغب بنشر مسار تعليمي؟ اضغط هنا

Eta and Etaprime Photoproduction on the Nucleon with the Isobar Model EtaMAID2018

118   0   0.0 ( 0 )
 نشر من قبل Lothar Tiator
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The isobar model EtaMAID has been updated with new and high precision data for eta and etaprime photoproduction on protons and neutrons from MAMI, ELSA, GRAAL and CLAS. The background is described in a recently developed Regge-cut model, and for the resonance part the whole list of nucleon resonances has been investigated with 21 N* states contributing to eta photoproduction and 12 N* states contributing to etaprime photoproduction. A new approach is discussed to avoid double counting in the overlap region of Regge and resonances. A comparison is done among four newly updated partial waves analyses for observables and partial waves. Finally, the possibility of a narrow resonance near W=1900 MeV is discussed, that would be able to explain unexpected energy and angular dependence of observables in p(gamma,etaprime)p near etaprime threshold.



قيم البحث

اقرأ أيضاً

106 - S.X. Nakamura 2018
We study $eta$ photoproduction off the deuteron ($gamma dtoeta pn$) at a special kinematics: $sim 0.94$ GeV of the photon beam energy and $sim 0^circ$ of the scattering angle of the proton. This kinematics is ideal to extract the low-energy $eta$-nuc leon scattering parameters such as $a_{eta N}$ (scattering length) and $r_{eta N}$ (effective range) because the $eta$-nucleon elastic scattering is significantly enhanced. We show that if a ratio $R$, the $gamma dtoeta pn$ cross section divided by the $gamma ptoeta p$ cross section convoluted with the proton momentum distribution in the deuteron, is measured with 5% error, ${rm Re}[a_{eta N}]$ (${rm Re}[r_{eta N}]$) can be determined at the precision of $simpm$0.1 fm ($simpm$0.5 fm), significantly narrowing down the currently estimated range of the parameters. The measurement is ongoing at the Research Center for Electron Photon Science (ELPH), Tohoku University.
We investigate $phi$ meson photoproduction on the nucleon and the uclide[4]{He} targets within a dynamical model approach based on a Hamiltonian which describes the production mechanisms by the Pomeron-exchange, meson-exchanges, $phi$ radiations, an d nucleon resonance excitations mechanisms. The final $phi N$ interactions are included being described by the gluon-exchange, direct $phi N$ couplings, and the box-diagrams arising from the couplings with $pi N$, $rho N$, $KLambda$, and $KSigma$ channels. The parameters of the Hamiltonian are determined by the experimental data of $gamma p to phi p$ from the CLAS Collaboration. The resulting Hamiltonian is then used to predict the coherent $phi$-meson production on the uclide[4]{He} targets by using the distorted-wave impulse approximation. For the proton target, the final $phi N$ rescattering effects, as required by the unitarity condition, are found to be very weak, which supports the earlier calculations in the literature. For the uclide[4]{He} targets, the predicted differential cross sections are in good agreement with the data obtained by the LEPS Collaboration. The role of each mechanism in this reaction is discussed and predictions for a wide range of scattering angles are presented, which can be tested in future experiments.
We demonstrate that the explanation of the neutron anomaly around $Wsim 1685$MeV in $gamma Nto eta N$ reactions provided by the $eta$MAID2018 isobar model is based on large violation of the flavour SU(3) symmetry in hadron interactions. This is yet a nother example of how conventional explanation (without invoking exotic narrow nucleon resonance) of the neutron anomaly metamorphoses into unconventional physics picture of hadron interactions. A possibility to mend the flavour SU(3) symmetry for some of resonances in $eta$MAID model is discussed.
Total and differential cross sections for $eta$ and $eta ^prime$ photoproduction off the proton have been determined with the CBELSA/TAPS detector for photon energies between 0.85 and 2.55 GeV. The $eta$ mesons are detected in their two neutral decay modes, $etatogammagamma$ and $etato 3pi^0to 6gamma$, and for the first time, cover the full angular range in $rm cos theta_{cm}$ of the $eta$ meson. These new $eta$ photoproduction data are consistent with the earlier CB-ELSA results. The $eta ^prime$ mesons are observed in their neutral decay to $pi^0pi^0etato 6gamma$ and also extend the coverage in angular range.
147 - S.X. Nakamura 2013
Recent CLAS data for the pi Sigma invariant mass distributions (line-shapes) in the gamma p -> K^+ pi Sigma reaction are theoretically investigated. The line-shapes have peaks associated with the Lambda(1405) excitation. Our model consists of gauge i nvariant photo-production mechanisms, and the chiral unitary model that gives the rescattering amplitudes where Lambda(1405) is contained. It is found that, while the pi Sigma line-shape data in the Lambda(1405) region are successfully reproduced by our model for all the charge states, the production mechanism is not so simple that we need to introduce parameters associated with short-range dynamics to fit the data. Our detailed analysis suggests that the nonresonant background contribution is not negligible, and its sizable effect shifts the Lambda(1405) peak position by several MeV. We also analyze the data using a Breit-Wigner amplitudes instead of those from the chiral unitary model. We find that the fitted Breit-Wigner parameters are closer to the higher pole position for Lambda(1405) of the chiral unitary model. This work sets a starting point for a fuller analysis in which line-shape as well as K^+ angular distribution data are simultaneously analyzed for extracting Lambda(1405) pole(s).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا