ﻻ يوجد ملخص باللغة العربية
Recent CLAS data for the pi Sigma invariant mass distributions (line-shapes) in the gamma p -> K^+ pi Sigma reaction are theoretically investigated. The line-shapes have peaks associated with the Lambda(1405) excitation. Our model consists of gauge invariant photo-production mechanisms, and the chiral unitary model that gives the rescattering amplitudes where Lambda(1405) is contained. It is found that, while the pi Sigma line-shape data in the Lambda(1405) region are successfully reproduced by our model for all the charge states, the production mechanism is not so simple that we need to introduce parameters associated with short-range dynamics to fit the data. Our detailed analysis suggests that the nonresonant background contribution is not negligible, and its sizable effect shifts the Lambda(1405) peak position by several MeV. We also analyze the data using a Breit-Wigner amplitudes instead of those from the chiral unitary model. We find that the fitted Breit-Wigner parameters are closer to the higher pole position for Lambda(1405) of the chiral unitary model. This work sets a starting point for a fuller analysis in which line-shape as well as K^+ angular distribution data are simultaneously analyzed for extracting Lambda(1405) pole(s).
We investigate the photoproduction of $K^*$ vector meson for the study of the $Lambda(1405)$ resonance. The invariant mass distribution of $piSigma$ shows a different shape from the nominal one, peaking at 1420 MeV. This is considered as a consequenc
The photo-induced $K^*$ vector meson production is investigated for the study of the $Lambda(1405)$ resonance. This reaction is particularly suited to the isolation of the second pole in the $Lambda(1405)$ region which couples dominantly to the $bar
The internal structure of the resonant Lambda(1405) state is investigated based on meson-baryon coupled-channels chiral dynamics. We evaluate Lambda(1405) form factors which are extracted from current-coupled scattering amplitudes in meson-baryon deg
We present a gauge invariant approach to photoproduction of mesons on nucleons within a chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the chiral effective Lagrangian and iterated in a Bethe-Salpeter equa
We investigate $phi$ meson photoproduction on the nucleon and the uclide[4]{He} targets within a dynamical model approach based on a Hamiltonian which describes the production mechanisms by the Pomeron-exchange, meson-exchanges, $phi$ radiations, an