ﻻ يوجد ملخص باللغة العربية
Automatic machine learning performs predictive modeling with high performing machine learning tools without human interference. This is achieved by making machine learning applications parameter-free, i.e. only a dataset is provided while the complete model selection and model building process is handled internally through (often meta) optimization. Projects like Auto-WEKA and auto-sklearn aim to solve the Combined Algorithm Selection and Hyperparameter optimization (CASH) problem resulting in huge configuration spaces. However, for most real-world applications, the optimization over only a few different key learning algorithms can not only be sufficient, but also potentially beneficial. The latter becomes apparent when one considers that models have to be validated, explained, deployed and maintained. Here, less complex model are often preferred, for validation or efficiency reasons, or even a strict requirement. Automatic gradient boosting simplifies this idea one step further, using only gradient boosting as a single learning algorithm in combination with model-based hyperparameter tuning, threshold optimization and encoding of categorical features. We introduce this general framework as well as a concrete implementation called autoxgboost. It is compared to current AutoML projects on 16 datasets and despite its simplicity is able to achieve comparable results on about half of the datasets as well as performing best on two.
Residual Networks (ResNets) have become state-of-the-art models in deep learning and several theoretical studies have been devoted to understanding why ResNet works so well. One attractive viewpoint on ResNet is that it is optimizing the risk in a fu
In this paper, we propose a density estimation algorithm called textit{Gradient Boosting Histogram Transform} (GBHT), where we adopt the textit{Negative Log Likelihood} as the loss function to make the boosting procedure available for the unsupervise
Boosting variational inference (BVI) approximates an intractable probability density by iteratively building up a mixture of simple component distributions one at a time, using techniques from sparse convex optimization to provide both computational
Approximating a probability density in a tractable manner is a central task in Bayesian statistics. Variational Inference (VI) is a popular technique that achieves tractability by choosing a relatively simple variational family. Borrowing ideas from
Stein variational gradient decent (SVGD) has been shown to be a powerful approximate inference algorithm for complex distributions. However, the standard SVGD requires calculating the gradient of the target density and cannot be applied when the grad