ﻻ يوجد ملخص باللغة العربية
Residual Networks (ResNets) have become state-of-the-art models in deep learning and several theoretical studies have been devoted to understanding why ResNet works so well. One attractive viewpoint on ResNet is that it is optimizing the risk in a functional space by combining an ensemble of effective features. In this paper, we adopt this viewpoint to construct a new gradient boosting method, which is known to be very powerful in data analysis. To do so, we formalize the gradient boosting perspective of ResNet mathematically using the notion of functional gradients and propose a new method called ResFGB for classification tasks by leveraging ResNet perception. Two types of generalization guarantees are provided from the optimization perspective: one is the margin bound and the other is the expected risk bound by the sample-splitting technique. Experimental results show superior performance of the proposed method over state-of-the-art methods such as LightGBM.
Automatic machine learning performs predictive modeling with high performing machine learning tools without human interference. This is achieved by making machine learning applications parameter-free, i.e. only a dataset is provided while the complet
In this paper, we initiate a study of functional minimization in Federated Learning. First, in the semi-heterogeneous setting, when the marginal distributions of the feature vectors on client machines are identical, we develop the federated functiona
In this paper, we propose a density estimation algorithm called textit{Gradient Boosting Histogram Transform} (GBHT), where we adopt the textit{Negative Log Likelihood} as the loss function to make the boosting procedure available for the unsupervise
Predictive modeling based on genomic data has gained popularity in biomedical research and clinical practice by allowing researchers and clinicians to identify biomarkers and tailor treatment decisions more efficiently. Analysis incorporating pathway
Discovery of causal relationships from observational data is an important problem in many areas. Several recent results have established the identifiability of causal DAGs with non-Gaussian and/or nonlinear structural equation models (SEMs). In this