ترغب بنشر مسار تعليمي؟ اضغط هنا

Balmer-Dominated Shocks Exclude Hot Progenitors for Many Type Ia Supernovae

71   0   0.0 ( 0 )
 نشر من قبل Tyrone Woods
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolutionary mechanism underlying Type Ia supernova explosions remains unknown. Recent efforts to constrain progenitor models based on the influence that their high energy emission would have on the interstellar medium (ISM) of galaxies have proven successful. For individual remnants, Balmer-dominated shocks reveal the ionization state of hydrogen in the immediately surrounding gas. Here we report deep upper limits on the temperature and luminosity of the progenitors of four Type Ia remnants with associated Balmer filaments: SN 1006, 0509-67.5, 0519-69.0, and DEM L71. For SN 1006, existing observations of helium line emission in the diffuse emission ahead of the shock provide an additional constraint on the helium ionization state in the vicinity of the remnant. Using the photoionization code Cloudy, we show that these constraints exclude any hot, luminous progenitor for SN 1006, including stably hydrogen or helium nuclear-burning white dwarfs, as well as any Chandrasekhar-mass white dwarf accreting matter at $gtrsim 9.5times10^{-8}M_{odot}/$yr via a disk. For 0509-67.5, the Balmer emission alone rules out any such white dwarf accreting $gtrsim 1.4times10^{-8}M_{odot}/$yr. For 0519-69.0 and DEM L71, the inferred ambient ionization state of hydrogen is only weakly in tension with a recently hot, luminous progenitor, and cannot be distinguished from e.g., a relatively higher local Lyman continuum background, without additional line measurements. Future deep spectroscopic observations will resolve this ambiguity, and can either detect the influence of any luminous progenitor or rule out the same for all resolved SN Ia remnants.



قيم البحث

اقرأ أيضاً

Type Ia supernovae (SNe Ia) are manifestations of stars deficient of hydrogen and helium disrupting in a thermonuclear runaway. While explosions of carbon-oxygen white dwarfs are thought to account for the majority of events, part of the observed div ersity may be due to varied progenitor channels. We demonstrate that helium stars with masses between $sim$1.8 and 2.5 M$_{odot}$ may evolve into highly degenerate, near-Chandrasekhar mass cores with helium-free envelopes that subsequently ignite carbon and oxygen explosively at densities $sim(1.8-5.9)times 10^{9}$g cm$^{-3}$. This happens either due to core growth from shell burning (when the core has a hybrid CO/NeO composition), or following ignition of residual carbon triggered by exothermic electron captures on $^{24}$Mg (for a NeOMg-dominated composition). We argue that the resulting thermonuclear runaways is likely to prevent core collapse, leading to the complete disruption of the star. The available nuclear energy at the onset of explosive oxygen burning suffices to create ejecta with a kinetic energy of $sim$10$^{51}$ erg, as in typical SNe Ia. Conversely, if these runaways result in partial disruptions, the corresponding transients would resemble SN Iax events similar to SN 2002cx. If helium stars in this mass range indeed explode as SNe Ia, then the frequency of events would be comparable to the observed SN Ib/c rates, thereby sufficing to account for the majority of SNe Ia in star-forming galaxies.
We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious diffculties, i f taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.
We place statistical constraints on Type Ia supernova (SN Ia) progenitors using 227 nebular phase spectra of 111 SNe Ia. We find no evidence of stripped companion emission in any of the nebular phase spectra. Upper limits are placed on the amount of mass that could go undetected in each spectrum using recent hydrodynamic simulations. With these null detections, we place an observational $3sigma$ upper limit on the fraction of SNe Ia that are produced through the classical H-rich non-degenerate companion scenario of < 5.5%. Additionally, we set a tentative $3sigma$ upper limit on He star progenitor scenarios of < 6.4%, although further theoretical modelling is required. These limits refer to our most representative sample including normal, 91bg-like, 91T-like, and Super Chandrasekhar sne but excluding SNe Iax and SNe Ia-CSM. As part of our analysis, we also derive a Nebular Phase Phillips Relation, which approximates the brightness of a SN Ia from $150-500$~days after maximum using the peak magnitude and decline rate parameter $Delta m_{15} (B)$.
A non-local-thermodynamic-equilibrium (NLTE) level population model of the first and second ionisation stages of iron, nickel and cobalt is used to fit a sample of XShooter optical + near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia). From th e ratio of the NIR lines to the optical lines limits can be placed on the temperature and density of the emission region. We find a similar evolution of these parameters across our sample. Using the evolution of the Fe II 12$,$570$,mathring{A},$to 7$,$155$,mathring{A},$line as a prior in fits of spectra covering only the optical wavelengths we show that the 7200$,mathring{A},$feature is fully explained by [Fe II] and [Ni II] alone. This approach allows us to determine the abundance of Ni II$,$/$,$Fe II for a large sample of 130 optical spectra of 58 SNe Ia with uncertainties small enough to distinguish between Chandrasekhar mass (M$_{text{Ch}}$) and sub-Chandrasekhar mass (sub-M$_{text{Ch}}$) explosion models. We conclude that the majority (85$%$) of normal SNe Ia have a Ni/Fe abundance that is in agreement with predictions of sub-M$_{text{Ch}}$ explosion simulations of $sim Z_odot$ progenitors. Only a small fraction (11$%$) of objects in the sample have a Ni/Fe abundance in agreement with M$_{text{Ch}}$ explosion models.
74 - D. Andrew Howell 2001
We find that spectroscopically peculiar subluminous SNe Ia come from an old population. Of the sixteen subluminous SNe Ia known, ten are found in E/S0 galaxies, and the remainder are found in early-type spirals. The probability that this is a chance occurrence is only 0.2%. The finding that subluminous SNe Ia are associated with an older stellar population indicates that for a sufficiently large lookback time (already accessible in current high redshift searches) they will not be found. Due to a scarcity in old populations, hydrogen and helium main sequence stars and He red giant stars that undergo Roche lobe overflow are unlikely to be the progenitors of subluminous SNe Ia. Earlier findings that overluminous SNe Ia (dM15(B) < 0.95) come from a young progenitor population are confirmed. The fact that subluminous SNe Ia and overluminous SNe Ia come from different progenitor populations and also have different properties is a prediction of the CO white dwarf merger progenitor scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا