ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Progenitors of Type Ia Supernovae

93   0   0.0 ( 0 )
 نشر من قبل Sharon Toolan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious diffculties, if taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.



قيم البحث

اقرأ أيضاً

The origin of the progenitors of type Ia supernovae (SNe Ia) is still uncertain. The core-degenerate (CD) scenario has been proposed as an alternative way for the production of SNe Ia. In this scenario, SNe Ia are formed at the final stage of common- envelope evolution from a merger of a carbon-oxygen white dwarf (CO WD) with the CO core of an asymptotic giant branch companion. However, the birthrates of SNe Ia from this scenario are still not well determined. In this work, we performed a detailed investigation on the CD scenario based on a binary population synthesis approach. The SN Ia delay times from this scenario are basically in the range of 90Myr-2500Myr, mainly contributing to the observed SNe Ia with short and intermediate delay times although this scenario can also produce some old SNe Ia. Meanwhile, our work indicates that the Galactic birthrates of SNe Ia from this scenario are no more than 20% of total SNe Ia due to more careful treatment of mass transfer. Although the SN Ia birthrates in the present work are lower than those in Ilkov & Soker, the CD scenario cannot be ruled out as a viable mechanism for the formation of SNe Ia. Especially, SNe Ia with circumstellar material from this scenario contribute to 0.7-10% of total SNe Ia, which means that the CD scenario can reproduce the observed birthrates of SNe Ia like PTF 11kx. We also found that SNe Ia happen systemically earlier for a high value of metallicity and their birthrates increase with metallicity.
Type Ia supernovae (SNe Ia) are manifestations of stars deficient of hydrogen and helium disrupting in a thermonuclear runaway. While explosions of carbon-oxygen white dwarfs are thought to account for the majority of events, part of the observed div ersity may be due to varied progenitor channels. We demonstrate that helium stars with masses between $sim$1.8 and 2.5 M$_{odot}$ may evolve into highly degenerate, near-Chandrasekhar mass cores with helium-free envelopes that subsequently ignite carbon and oxygen explosively at densities $sim(1.8-5.9)times 10^{9}$g cm$^{-3}$. This happens either due to core growth from shell burning (when the core has a hybrid CO/NeO composition), or following ignition of residual carbon triggered by exothermic electron captures on $^{24}$Mg (for a NeOMg-dominated composition). We argue that the resulting thermonuclear runaways is likely to prevent core collapse, leading to the complete disruption of the star. The available nuclear energy at the onset of explosive oxygen burning suffices to create ejecta with a kinetic energy of $sim$10$^{51}$ erg, as in typical SNe Ia. Conversely, if these runaways result in partial disruptions, the corresponding transients would resemble SN Iax events similar to SN 2002cx. If helium stars in this mass range indeed explode as SNe Ia, then the frequency of events would be comparable to the observed SN Ib/c rates, thereby sufficing to account for the majority of SNe Ia in star-forming galaxies.
Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite their highly successful use in this capacity, the progenitors of these eve nts are incompletely understood. We describe simulating type Ia supernovae in the paradigm of a thermonuclear runaway occurring in a massive white dwarf star. We describe the multi-scale physical processes that realistic models must incorporate and the numerical models for these that we employ. In particular, we describe a flame-capturing scheme that addresses the problem of turbulent thermonuclear combustion on unresolved scales. We present the results of our study of the systematics of type Ia supernovae including trends in brightness following from properties of the host galaxy that agree with observations. We also present performance results from simulations on leadership-class architectures.
Context. The companions of the exploding carbon-oxygen white dwarfs (CO WDs) for producing type Ia supernovae (SNe Ia) are still not conclusively confirmed. A red-giant (RG) star has been suggested to be the mass donor of the exploding WD, named as t he symbiotic channel. However, previous studies on the this channel gave a relatively low rate of SNe Ia. Aims. We aim to systematically investigate the parameter space, Galactic rates and delay time distributions of SNe Ia from the symbiotic channel by employing a revised mass-transfer prescription. Methods. We adopted an integrated mass-transfer prescription to calculate the mass-transfer process from a RG star onto the WD. In this prescription, the mass-transfer rate varies with the local material states. Results. We evolved a large number of WD+RG systems, and found that the parameter space of WD+RG systems for producing SNe Ia is significantly enlarged. This channel could produce SNe Ia with intermediate and old ages, contributing to at most 5% of all SNe Ia in the Galaxy. Our model increases the SN Ia rate from this channel by a factor of 5. We suggest that the symbiotic systems RS Oph and T CrB are strong candidates for the progenitors of SNe Ia.
Double white dwarf binaries with merger timescales smaller than the Hubble time and with a total mass near the Chandrasekhar limit (i.e. classical Chandrasekhar population) or with high-mass primaries (i.e. sub-Chandrasekhar population) are potential supernova type Ia (SNIa) progenitors. However, we have not yet unambiguously confirmed the existence of these objects observationally, a fact that has been often used to criticise the relevance of double white dwarfs for producing SNIa. We analyse whether this lack of detections is due to observational effects. To that end we simulate the double white dwarf binary population in the Galaxy and obtain synthetic spectra for the SNIa progenitors. We demonstrate that their identification, based on the detection of Halpha double-lined profiles arising from the two white dwarfs in the synthetic spectra, is extremely challenging due to their intrinsic faintness. This translates into an observational probability of finding double white dwarf SNIa progenitors in the Galaxy of (2.1+-1.0)x10^{-5} and (0.8+-0.4)x10^{-5} for the classical Chandrasekhar and the sub-Chandrasekhar progenitor populations, respectively. Eclipsing double white dwarf SNIa progenitors are found to suffer from the same observational effect. The next generation of large-aperture telescopes are expected to help in increasing the probability for detection by ~1 order of magnitude. However, it is only with forthcoming observations such as those provided by LISA that we expect to unambiguously confirm or disprove the existence of double white dwarf SNIa progenitors and to test their importance for producing SNIa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا