ترغب بنشر مسار تعليمي؟ اضغط هنا

Neonatal Pain Expression Recognition Using Transfer Learning

102   0   0.0 ( 0 )
 نشر من قبل Ghada Zamzmi
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transfer learning using pre-trained Convolutional Neural Networks (CNNs) has been successfully applied to images for different classification tasks. In this paper, we propose a new pipeline for pain expression recognition in neonates using transfer learning. Specifically, we propose to exploit a pre-trained CNN that was originally trained on a relatively similar dataset for face recognition (VGG Face) as well as CNNs that were pre-trained on a relatively different dataset for image classification (iVGG F,M, and S) to extract deep features from neonates faces. In the final stage, several supervised machine learning classifiers are trained to classify neonates facial expression into pain or no pain expression. The proposed pipeline achieved, on a testing dataset, 0.841 AUC and 90.34 accuracy, which is approx. 7 higher than the accuracy of handcrafted traditional features. We also propose to combine deep features with traditional features and hypothesize that the mixed features would improve pain classification performance. Combining deep features with traditional features achieved 92.71 accuracy and 0.948 AUC. These results show that transfer learning, which is a faster and more practical option than training CNN from the scratch, can be used to extract useful features for pain expression recognition in neonates. It also shows that combining deep features with traditional handcrafted features is a good practice to improve the performance of pain expression recognition and possibly the performance of similar applications.



قيم البحث

اقرأ أيضاً

Orthopedic disorders are a common cause for euthanasia among horses, which often could have been avoided with earlier detection. These conditions often create varying degrees of subtle but long-term pain. It is challenging to train a visual pain reco gnition method with video data depicting such pain, since the resulting pain behavior also is subtle, sparsely appearing, and varying, making it challenging for even an expert human labeler to provide accurate ground-truth for the data. We show that transferring features from a dataset of horses with acute nociceptive pain (where labeling is less ambiguous) can aid the learning to recognize more complex orthopedic pain. Moreover, we present a human expert baseline for the problem, as well as an extensive empirical study of various domain transfer methods and of what is detected by the pain recognition method trained on acute pain in the orthopedic dataset. Finally, this is accompanied with a discussion around the challenges posed by real-world animal behavior datasets and how best practices can be established for similar fine-grained action recognition tasks. Our code is available at https://github.com/sofiabroome/painface-recognition.
68 - Keyu Yan 2018
Cross-database non-frontal expression recognition is a very meaningful but rather difficult subject in the fields of computer vision and affect computing. In this paper, we proposed a novel transductive deep transfer learning architecture based on wi dely used VGGface16-Net for this problem. In this framework, the VGGface16-Net is used to jointly learn an common optimal nonlinear discriminative features from the non-frontal facial expression samples between the source and target databases and then we design a novel transductive transfer layer to deal with the cross-database non-frontal facial expression classification task. In order to validate the performance of the proposed transductive deep transfer learning networks, we present extensive crossdatabase experiments on two famous available facial expression databases, namely the BU-3DEF and the Multi-PIE database. The final experimental results show that our transductive deep transfer network outperforms the state-of-the-art cross-database facial expression recognition methods.
104 - Tao Pu , Tianshui Chen , Yuan Xie 2020
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance i n some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods. Codes and trained models are available at https://github.com/HCPLab-SYSU/AUE-CRL.
Engagement is a key indicator of the quality of learning experience, and one that plays a major role in developing intelligent educational interfaces. Any such interface requires the ability to recognise the level of engagement in order to respond ap propriately; however, there is very little existing data to learn from, and new data is expensive and difficult to acquire. This paper presents a deep learning model to improve engagement recognition from images that overcomes the data sparsity challenge by pre-training on readily available basic facial expression data, before training on specialised engagement data. In the first of two steps, a facial expression recognition model is trained to provide a rich face representation using deep learning. In the second step, we use the models weights to initialize our deep learning based model to recognize engagement; we term this the engagement model. We train the model on our new engagement recognition dataset with 4627 engaged and disengaged samples. We find that the engagement model outperforms effective deep learning architectures that we apply for the first time to engagement recognition, as well as approaches using histogram of oriented gradients and support vector machines.
Micro-expressions (MEs) are involuntary facial movements revealing peoples hidden feelings in high-stake situations and have practical importance in medical treatment, national security, interrogations and many human-computer interaction systems. Ear ly methods for MER mainly based on traditional appearance and geometry features. Recently, with the success of deep learning (DL) in various fields, neural networks have received increasing interests in MER. Different from macro-expressions, MEs are spontaneous, subtle, and rapid facial movements, leading to difficult data collection, thus have small-scale datasets. DL based MER becomes challenging due to above ME characters. To date, various DL approaches have been proposed to solve the ME issues and improve MER performance. In this survey, we provide a comprehensive review of deep micro-expression recognition (MER), including datasets, deep MER pipeline, and the bench-marking of most influential methods. This survey defines a new taxonomy for the field, encompassing all aspects of MER based on DL. For each aspect, the basic approaches and advanced developments are summarized and discussed. In addition, we conclude the remaining challenges and and potential directions for the design of robust deep MER systems. To the best of our knowledge, this is the first survey of deep MER methods, and this survey can serve as a reference point for future MER research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا