ﻻ يوجد ملخص باللغة العربية
Spin waves are investigated in Yttrium Iron Garnet (YIG) waveguides with a thickness of 39 nm and widths ranging down to 50 nm, i.e., with aspect ratios thickness over width approaching unity, using Brillouin Light Scattering spectroscopy. The experimental results are verified by a semi-analytical theory and micromagnetic simulations. A critical width is found, below which the exchange interaction suppresses the dipolar pinning phenomenon. This changes the quantization criterion for the spin-wave eigenmodes and results in a pronounced modification of the spin-wave characteristics. The presented semi-analytical theory allows for the calculation of spin-wave mode profiles and dispersion relations in nano-structures.
The field of magnonics attracts significant attention due to the possibility of utilizing information coded into the spin-wave phase or amplitude to perform computation operations on the nanoscale. Recently, spin waves were investigated in Yttrium Ir
Magnetostatic spin wave dispersion and loss are measured in micron scale spin wave-guides in ferromagnetic, metallic CoTaZr. Results are in good agreement with model calculations of spin wave dispersion. The measured attenuation lengths, of the order
By their very nature, voltage/current excited Spin Waves (SWs) propagate through waveguides without consuming noticeable power. If SW excitation is performed by the continuous application of voltages/currents to the input, which is usually the case,
Magnonics is seen nowadays as a candidate technology for energy-efficient data processing in classical and quantum systems. Pronounced nonlinearity, anisotropy of dispersion relations and phase degree of freedom of spin waves require advanced methodo
Spin-wave propagation in an assembly of microfabricated 20 nm thick, 2.5 {mu}m wide Yttrium Iron Garnet (YIG) waveguides is studied using propagating spin-wave spectroscopy (PSWS) and phase resolved micro-focused Brillouin Light Scattering ({mu}-BLS)