ﻻ يوجد ملخص باللغة العربية
Magnonics is seen nowadays as a candidate technology for energy-efficient data processing in classical and quantum systems. Pronounced nonlinearity, anisotropy of dispersion relations and phase degree of freedom of spin waves require advanced methodology for probing spin waves at room as well as at mK temperatures. Yet, the use of the established optical techniques like Brillouin light scattering (BLS) or magneto optical Kerr effect (MOKE) at ultra-low temperatures is forbiddingly complicated. By contrast, microwave spectroscopy can be used at all temperatures but is usually lacking spatial and wavenumber resolution. Here, we develop a variable-gap propagating spin-wave spectroscopy (VG-PSWS) method for the deduction of the dispersion relation of spin waves in wide frequency and wavenumber range. The method is based on the phase-resolved analysis of the spin-wave transmission between two antennas with variable spacing, in conjunction with theoretical data treatment. We validate the method for the in-plane magnetized CoFeB and YIG thin films in $kperp B$ and $kparallel B$ geometries by deducing the full set of material and spin-wave parameters, including spin-wave dispersion, hybridization of the fundamental mode with the higher-order perpendicular standing spin-wave modes and surface spin pinning. The compatibility of microwaves with low temperatures makes this approach attractive for cryogenic magnonics at the nanoscale.
The increasing demand for ultrahigh data storage densities requires development of 3D magnetic nanostructures. In this regard, focused electron beam induced deposition (FEBID) is a technique of choice for direct-writing of various complex nano-archit
We experimentally demonstrate generation of coherent propagating magnons in ultra-thin magnetic-insulator films by spin-orbit torque induced by dc electric current. We show that this challenging task can be accomplished by utilizing magnetic-insulato
We propose a method to generate magnetic skyrmions by focusing spin waves totally reflected by a curved film edge. Based on the principle of identical magnonic path length, we derive the edge contour that is parabolic and frequency-independent. Micro
We demonstrate a high-quality spin orbit torque nano-oscillator comprised of spin wave modes confined by the magnetic field by the strongly inhomogeneous dipole field of a nearby micromagnet. This approach enables variable spatial confinement and sys
Recent neutron scattering measurements reveal spin and charge ordering in the half-doped nickelate, La$_{3/2}$ Sr$_{1/2}$ NiO$_4$. Many of the features of the magnetic excitations have been explained in terms of the spin waves of diagonal stripes wit