ﻻ يوجد ملخص باللغة العربية
A major challenge that is currently faced in the design of applications for the Internet of Things (IoT) concerns with the optimal use of available energy resources given the battery lifetime of the IoT devices. The challenge is derived from the heterogeneity of the devices, in terms of their hardware and the provided functionalities (e.g data processing/communication). In this paper, we propose a novel method for (i) characterizing the parameters that influence energy consumption and (ii) validating the energy consumption of IoT devices against the systems energy-efficiency requirements (e.g. lifetime). Our approach is based on energy-aware models of the IoT applications design in the BIP (Behavior, Interaction, Priority) component framework. This allows for a detailed formal representation of the systems behavior and its subsequent validation, thus providing feedback for enhancements in the pre-deployment or pre-production stages. We illustrate our approach through a Building Management System, using well-known IoT devices running the Contiki OS that communicate by diverse IoT protocols (e.g. CoAP, MQTT). The results allow to derive tight bounds for the energy consumption in various device functionalities, as well as to validate lifetime requirements through Statistical Model Checking.
To meet the requirements of high energy efficiency (EE) and large system capacity for the fifth-generation (5G) Internet of Things (IoT), the use of massive multiple-input multipleoutput (MIMO) technology has been launched in the massive IoT (mIoT) n
In this paper, we consider a light fidelity (LiFi)-enabled bidirectional Internet of Things (IoT) communication system, where visible light and infrared light are used in the downlink and uplink, respectively. In order to improve the energy efficienc
Combining intelligent reflecting surface (IRS) and non-orthogonal multiple access (NOMA) is an effective solution to enhance communication coverage and energy efficiency. In this paper, we focus on an IRS-assisted NOMA network and propose an energy-e
The digital Subscriber Line (DSL) remains an important component of heterogeneous networking, especially in historic city-centers, where using optical fibre is less realistic. Recently, the power consumption has become an important performance metric
Non-orthogonal multiple access (NOMA) is considered to be one of the best candidates for future networks due to its ability to serve multiple users using the same resource block. Although early studies have focused on transmission reliability and ene