ترغب بنشر مسار تعليمي؟ اضغط هنا

The Two Faces of Capacitance: New Interpretations for Electrical Impedance Measurements of Perovskite Solar Cells and Their Relation to Hysteresis

48   0   0.0 ( 0 )
 نشر من قبل Daniel Jacobs
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel A. Jacobs




اسأل ChatGPT حول البحث

Perovskite solar cells are notorious for exhibiting transient behaviour not seen in conventional inorganic semiconductor devices. Significant inroads have been made into understanding this fact in terms of rapid ion migration, now a well-established property of the prototype photovoltaic perovskite MAPbI$_3$ and strongly implicated in the newer mixed compositions. Here we study the manifestations of ion migration in frequency-domain small-signal measurements, focusing on the popular technique of Electrical Impedance Spectroscopy (EIS). We provide new interpretations for a variety of previously puzzling features, including giant photo-induced low-frequency capacitance and negative capacitance in a variety of forms. We show that these apparently strange measurements can be rationalized by the splitting of AC current into two components, one associated with charge-storage, and the other with the quasi-steady-state recombination current of electrons and holes. The latter contribution to the capacitance can take either a positive or a negative sign, and is potentially very large when slow, voltage-sensitive processes such as ion migration are at play. Using numerical drift-diffusion semiconductor models, we show that giant photo-induced capacitance, inductive loop features, and low-frequency negative capacitance all emerge naturally as consequences of ion migration via its coupling to quasi-steady-state electron and hole currents. In doing so, we unify the understanding of EIS measurements with the comparably well-developed theory of rate dependent current-voltage (I-V) measurements in perovskite cells. Comparing the two techniques, we argue that EIS is more suitable for quantifying I-V hysteresis than conventional methods based on I-V sweeps, and demonstrate this application on a variety of cell types.



قيم البحث

اقرأ أيضاً

Solar cells based on organic-inorganic metal halide perovskites show efficiencies close to highly-optimized silicon solar cells. However, ion migration in the perovskite films leads to device degradation and impedes large scale commercial application s. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I-) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I- ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I- ions. We furthermore observe that the activation energy of mobile I- ions (0.29 eV) is highly reproducible for different devices, while the activation energy of mobile MA+ depends strongly on device fabrication. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells.
We explore the degradation behaviour under continuous illumination and direct oxygen exposure of inverted unencapsulated formamidinium(FA)0.83Cs0.17Pb(I0.8Br0.2)3, CH3NH3PbI3, and CH3NH3PbI3-xClx perovskite solar cells. We continuously test the devic es in-situ and in-operando with current-voltage sweeps, transient photocurrent, and transient photovoltage measurements, and find that degradation in the CH3NH3PbI3-xClx solar cells due to oxygen exposure occurs over shorter timescales than FA0.83Cs0.17Pb(I0.8Br0.2)3 mixed-cation devices. We attribute these oxygen-induced losses in the power conversion efficiencies to the formation of electron traps within the perovskite photoactive layer. Our results highlight that the formamidinium-caesium mixed-cation perovskites are much less sensitive to oxygen-induced degradation than the methylammonium-based perovskite cells, and that further improvements in perovskite solar cell stability should focus on the mitigation of trap generation during ageing.
101 - Nir Tessler , Yana Vaynzof 2020
In this perspective, we explore the insights into the device physics of perovskite solar cells gained from modeling and simulation of these devices. We discuss a range of factors that influence the modeling of perovskite solar cells, including the ro le of ions, dielectric constant, density of states, and spatial distribution of recombination losses. By focusing on the effect of non-ideal energetic alignment in perovskite photovoltaic devices, we demonstrate a unique feature in low recombination perovskite materials - the formation of an interfacial, primarily electronic, self-induced dipole that results in a significant increase in the built-in potential and device open-circuit voltage. Finally, we discuss the future directions of device modeling in the field of perovskite photovoltaics, describing some of the outstanding open questions in which device simulations can serve as a particularly powerful tool for future advancements in the field.
Previously, we proposed that the polarization and capacitive charge in ce{CH3NH3PbI3} screens the external electric field that hinders charge transport. We argue here that this screening effect is in significant part responsible for the power convers ion characteristics and hysteresis in ce{CH3NH3PbI3} photovoltaic cells. In this paper, we implement capacitive charge and polarization charge into the numerical model that we have developed for perovskite solar cells. Fields induced by these two charges screen the applied hindering field, promote charge transport, and improve solar cells performance, especially in solar cells with short diffusion lengths. This is the reason why perovskite solar cells made from simple fabrication methods can achieve high performance. More importantly, with relaxations of capacitive charge and polarization charge, we quantitatively reproduce experimental anomalous hysteresis J-V curves. This reveals that both polarization relaxation and ions relaxation could contribute to anomalous hysteresis in perovskite solar cells.
Electrical transients enabled by optical excitation and electric detection provide a distinctive opportunity to study the charge transport, recombination and even the hysteresis of a solar cell in a much wider time window ranging from nanoseconds to seconds. However, controversies on how to exploit these investigations to unravel the charge loss mechanism of the cell have been ongoing. Herein, a new methodology of quantifying the charge loss within the bulk absorber or at the interfaces and the defect properties of junction solar cells has been proposed after the conventional tail-state framework is firstly demonstrated to be unreasonable. This methodology has been successfully applied in the study of commercialized silicon and emerging Cu2ZnSn(S, Se)4 and perovskite solar cells herein and should be universal to other photovoltaic device systems with similar structures. Overall, this work provides an alluring route for comprehensive investigation of dynamic physics processes and charge loss mechanism of junction solar cells and possesses potential applications for other optoelectronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا