ترغب بنشر مسار تعليمي؟ اضغط هنا

The SOPHIE search for northern extrasolar planets XIII. Two planets around M-dwarfs Gl617A and Gl96

111   0   0.0 ( 0 )
 نشر من قبل Melissa Hobson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of two exoplanets and a further tentative candidate around the M-dwarf stars Gl96 and Gl617A, based on radial velocity measurements obtained with the SOPHIE spectrograph at the Observatoire de Haute-Provence. Both stars were observed in the context of the SOPHIE exoplanet consortiums dedicated M-dwarf subprogramme, which aims to detect exoplanets around nearby M-dwarf stars through a systematic survey. For Gl96, we present the discovery of a new exoplanet at 73.9 d with a minimum mass of 19.66 earth masses. Gl96 b has an eccentricity of 0.44, placing it among the most eccentric planets orbiting M stars. For Gl617A we independently confirm a recently reported exoplanet at 86.7 d with a minimum mass of 31.29 earth masses. Both Gl96 b and Gl617A b are potentially within the habitable zone, though Gl96 bs high eccentricity may take it too close to the star at periapsis.



قيم البحث

اقرأ أيضاً

81 - M. J. Hobson 2019
We present the detection of a Warm Neptune orbiting the M-dwarf Gl378, using radial velocity measurements obtained with the SOPHIE spectrograph at the Observatoire de Haute-Provence. The star was observed in the context of the SOPHIE exoplanets conso rtiums subprogramme dedicated to finding planets around M-dwarfs. Gl378 is an M1 star, of solar metallicity, at a distance of 14.96 pc. The single planet detected, Gl378 b, has a minimum mass of 13.02 $rm M_{Earth}$ and an orbital period of 3.82 days, which place it at the lower boundary of the Hot Neptune desert. As one of only a few such planets around M-dwarfs, Gl378 b provides important clues to the evolutionary history of these close-in planets. In particular, the eccentricity of 0.1 may point to a high-eccentricity migration. The planet may also have lost part of its envelope due to irradiation.
We report the discovery of a planetary system around HD9446, performed from radial velocity measurements secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory during more than two years. At least two planets o rbit this G5V, active star: HD9446b has a minimum mass of 0.7 M_Jup and a slightly eccentric orbit with a period of 30 days, whereas HD9446c has a minimum mass of 1.8 M_Jup and a circular orbit with a period of 193 days. As for most of the known multi-planet systems, the HD9446-system presents a hierarchical disposition, with a massive outer planet and a lighter inner planet.
We report the detection of a Jupiter-mass planet discovered with the SOPHIE spectrograph mounted on the 1.93-m telescope at the Haute-Provence Observatory. The new planet orbits HD109246, a G0V star slightly more metallic than the Sun. HD109246b has a minimum mass of 0.77 MJup, an orbital period of 68 days, and an eccentricity of 0.12. It is placed in a sparsely populated region of the period distribution of extrasolar planets. We also present a correction method for the so-called seeing effect that affects the SOPHIE radial velocities. We complement this discovery announcement with a description of some calibrations that are implemented in the SOPHIE automatic reduction pipeline. These calibrations allow the derivation of the photon-noise radial velocity uncertainty and some useful stellar properties (vsini, [Fe/H], logRHK) directly from the SOPHIE data.
We present new radial velocity measurements of eight stars secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory allowing the detection and characterization of new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes between 6.7 and 9.6; the planets have minimum masses M_p sin i between 0.4 to 3.8 M_Jup and orbital periods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD143105, HIP109600, HD35759, HIP109384, HD220842, and HD12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP65407, allows the discovery of two giant planets, just outside the 12:5 resonance in weak mutual interaction. The last star, HD141399, was already known to host a four-planetary system; our additional data and analyses allow new constraints to be put on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planetary systems. HD143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted despite this is not a transiting system. The giant planets HIP109600b, HIP109384b, and HD141399c are located in the habitable zone of their host star.
We present new radial velocity measurements for three low-metallicity solar-like stars observed with the SOPHIE spectrograph and its predecessor ELODIE, both installed at the 193 cm telescope of the Haute-Provence Observatory, allowing the detection and characterization of three new giant extrasolar planets in intermediate periods of 1.7 to 3.7 years. All three stars, HD17674, HD42012 and HD29021 present single giant planetary companions with minimum masses between 0.9 and 2.5 MJup. The range of periods and masses of these companions, along with the distance of their host stars, make them good targets to look for astrometric signals over the lifetime of the new astrometry satellite Gaia. We discuss the preliminary astrometric solutions obtained from the first Gaia data release.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا