ترغب بنشر مسار تعليمي؟ اضغط هنا

The SOPHIE search for northern extrasolar planets III. A Jupiter-mass companion around HD 109246

144   0   0.0 ( 0 )
 نشر من قبل Isabelle Boisse
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of a Jupiter-mass planet discovered with the SOPHIE spectrograph mounted on the 1.93-m telescope at the Haute-Provence Observatory. The new planet orbits HD109246, a G0V star slightly more metallic than the Sun. HD109246b has a minimum mass of 0.77 MJup, an orbital period of 68 days, and an eccentricity of 0.12. It is placed in a sparsely populated region of the period distribution of extrasolar planets. We also present a correction method for the so-called seeing effect that affects the SOPHIE radial velocities. We complement this discovery announcement with a description of some calibrations that are implemented in the SOPHIE automatic reduction pipeline. These calibrations allow the derivation of the photon-noise radial velocity uncertainty and some useful stellar properties (vsini, [Fe/H], logRHK) directly from the SOPHIE data.



قيم البحث

اقرأ أيضاً

364 - I. Boisse , F. Pepe , C. Perrier 2012
We present radial-velocity measurements obtained in a programs underway to search for extrasolar planets with the spectrograph SOPHIE at the 1.93-m telescope of the Haute-Provence Observatory. Targets were selected from catalogs observed with ELODIE, mounted previously at the telescope, in order to detect long-period planets with an extended database close to 15 years. Two new Jupiter-analog candidates are reported to orbit the bright stars HD150706 and HD222155 in 16.1 and 10.9 yr at 6.7 (+4.0,-1.4) and 5.1(+0.6,-0.7) AU and to have minimum masses of 2.71 (+1.44,-0.66) and 1.90 (+0.67,-0.53) M_Jup, respectively. Using the measurements from ELODIE and SOPHIE, we refine the parameters of the long-period planets HD154345b and HD89307b, and publish the first reliable orbit for HD24040b. This last companion has a minimum mass of 4.01 +/- 0.49 M_Jup orbiting its star in 10.0 yr at 4.92 +/- 0.38 AU. Moreover, the data provide evidence of a third bound object in the HD24040 system. With a surrounding dust debris disk, HD150706 is an active G0 dwarf for which we partially corrected the effect of the stellar spot on the SOPHIE radial-velocities. HD222155 is an inactive G2V star. On the basis of the previous findings of Lovis and collaborators and since no significant correlation between the radial-velocity variations and the activity index are found in the SOPHIE data, these variations are not expected to be only due to stellar magnetic cycles. Finally, we discuss the main properties of this new population of long-period Jupiter-mass planets, which for the moment, consists of fewer than 20 candidates. These stars are preferential targets either for direct-imaging or astrometry follow-up to constrain the system parameters and for higher precision radial-velocity to search for lower mass planets, aiming to find a Solar System twin.
We report the discovery of a planetary system around HD9446, performed from radial velocity measurements secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory during more than two years. At least two planets o rbit this G5V, active star: HD9446b has a minimum mass of 0.7 M_Jup and a slightly eccentric orbit with a period of 30 days, whereas HD9446c has a minimum mass of 1.8 M_Jup and a circular orbit with a period of 193 days. As for most of the known multi-planet systems, the HD9446-system presents a hierarchical disposition, with a massive outer planet and a lighter inner planet.
456 - F. Bouchy , G. Hebrard , S. Udry 2009
We report on the discovery of a substellar companion or a massive Jupiter orbiting the G5V star HD16760 with the spectrograph SOPHIE installed on the OHP 1.93-m telescope. Characteristics and performances of the spectrograph are presented, as well as the SOPHIE exoplanet consortium program. With a minimum mass of 14.3 Mjup, an orbital period of 465 days and an eccentricity of 0.067, HD16760b seems to be located just at the end of the mass distribution of giant planets, close to planet/brown-dwarf transition. Its quite circular orbit supports a formation in a gaseous protoplanetary disk.
We report the detection of two exoplanets and a further tentative candidate around the M-dwarf stars Gl96 and Gl617A, based on radial velocity measurements obtained with the SOPHIE spectrograph at the Observatoire de Haute-Provence. Both stars were o bserved in the context of the SOPHIE exoplanet consortiums dedicated M-dwarf subprogramme, which aims to detect exoplanets around nearby M-dwarf stars through a systematic survey. For Gl96, we present the discovery of a new exoplanet at 73.9 d with a minimum mass of 19.66 earth masses. Gl96 b has an eccentricity of 0.44, placing it among the most eccentric planets orbiting M stars. For Gl617A we independently confirm a recently reported exoplanet at 86.7 d with a minimum mass of 31.29 earth masses. Both Gl96 b and Gl617A b are potentially within the habitable zone, though Gl96 bs high eccentricity may take it too close to the star at periapsis.
81 - M. J. Hobson 2019
We present the detection of a Warm Neptune orbiting the M-dwarf Gl378, using radial velocity measurements obtained with the SOPHIE spectrograph at the Observatoire de Haute-Provence. The star was observed in the context of the SOPHIE exoplanets conso rtiums subprogramme dedicated to finding planets around M-dwarfs. Gl378 is an M1 star, of solar metallicity, at a distance of 14.96 pc. The single planet detected, Gl378 b, has a minimum mass of 13.02 $rm M_{Earth}$ and an orbital period of 3.82 days, which place it at the lower boundary of the Hot Neptune desert. As one of only a few such planets around M-dwarfs, Gl378 b provides important clues to the evolutionary history of these close-in planets. In particular, the eccentricity of 0.1 may point to a high-eccentricity migration. The planet may also have lost part of its envelope due to irradiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا