ﻻ يوجد ملخص باللغة العربية
Calculation of band structure of three dimensional photonic crystals amounts to solving large-scale Maxwell eigenvalue problems, which are notoriously challenging due to high multiplicity of zero eigenvalue. In this paper, we try to address this problem in such a broad context that band structure of three dimensional isotropic photonic crystals with all 14 Bravais lattices can be efficiently computed in a unified framework. We uncover the delicate machinery behind several key results of our work and on the basis of this new understanding we drastically simplify the derivations, proofs and arguments in our framework. In this work particular effort is made on reformulating the Bloch boundary condition for all 14 Bravais lattices in the redefined orthogonal coordinate system, and establishing eigen-decomposition of discrete partial derivative operators by systematic use of commutativity among them, which has been overlooked previously, and reducing eigen-decomposition of double-curl operator to the canonical form of a 3x3 complex skew-symmetric matrix under unitary congruence. With the validity of the novel nullspace free method in the broad context, we perform some calculations on one benchmark system to demonstrate the accuracy and efficiency of our algorithm.
Distance geometry problem belongs to a class of hard problems in classical computation that can be understood in terms of a set of inputs processed according to a given transformation, and for which the number of possible outcomes grows exponentially
In this paper, based on a domain decomposition (DD) method, we shall propose an efficient two-level preconditioned Helmholtz-Jacobi-Davidson (PHJD) method for solving the algebraic eigenvalue problem resulting from the edge element approximation of t
In latest years, several advancements have been made in symbolic-numerical eigenvalue techniques for solving polynomial systems. In this article, we add to this list by reducing the task to an eigenvalue problem in a considerably faster and simpler w
Bravais lattices are the most fundamental building blocks of crystallography. They are classified into groups according to their translational, rotational, and inversion symmetries. In computational analysis of Bravais lattices, fulfilment of symmetr
A novel orthogonalization-free method together with two specific algorithms are proposed to solve extreme eigenvalue problems. On top of gradient-based algorithms, the proposed algorithms modify the multi-column gradient such that earlier columns are