ترغب بنشر مسار تعليمي؟ اضغط هنا

Triangularized Orthogonalization-free Method for Solving Extreme Eigenvalue Problems

87   0   0.0 ( 0 )
 نشر من قبل Yingzhou Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel orthogonalization-free method together with two specific algorithms are proposed to solve extreme eigenvalue problems. On top of gradient-based algorithms, the proposed algorithms modify the multi-column gradient such that earlier columns are decoupled from later ones. Global convergence to eigenvectors instead of eigenspace is guaranteed almost surely. Locally, algorithms converge linearly with convergence rate depending on eigengaps. Momentum acceleration, exact linesearch, and column locking are incorporated to further accelerate both algorithms and reduce their computational costs. We demonstrate the efficiency of both algorithms on several random matrices with different spectrum distribution and matrices from computational chemistry.



قيم البحث

اقرأ أيضاً

101 - Ruo Li , Zhiyuan Sun , Fanyi Yang 2019
We adapt a symmetric interior penalty discontinuous Galerkin method using a patch reconstructed approximation space to solve elliptic eigenvalue problems, including both second and fourth order problems in 2D and 3D. It is a direct extension of the m ethod recently proposed to solve corresponding boundary value problems, and the optimal error estimates of the approximation to eigenfunctions and eigenvalues are instant consequences from existing results. The method enjoys the advantage that it uses only one degree of freedom on each element to achieve very high order accuracy, which is highly preferred for eigenvalue problems as implied by Zhangs recent study [J. Sci. Comput. 65(2), 2015]. By numerical results, we illustrate that higher order methods can provide much more reliable eigenvalues. To justify that our method is the right one for eigenvalue problems, we show that the patch reconstructed approximation space attains the same accuracy with fewer degrees of freedom than classical discontinuous Galerkin methods. With the increasing of the polynomial order, our method can even achieve a better performance than conforming finite element methods, such methods are traditionally the methods of choice to solve problems with high regularities.
Consider using the right-preconditioned generalized minimal residual (AB-GMRES) method, which is an efficient method for solving underdetermined least squares problems. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-condition ed problems, the iterates of the AB-GMRES method may diverge. This is mainly because the Hessenberg matrix in the GMRES method becomes very ill-conditioned so that the backward substitution of the resulting triangular system becomes numerically unstable. We propose a stabilized GMRES based on solving the normal equations corresponding to the above triangular system using the standard Cholesky decomposition. This has the effect of shifting upwards the tiny singular values of the Hessenberg matrix which lead to an inaccurate solution. Thus, the process becomes numerically stable and the system becomes consistent, rendering better convergence and a more accurate solution. Numerical experiments show that the proposed method is robust and efficient for solving inconsistent and ill-conditioned underdetermined least squares problems. The method can be considered as a way of making the GMRES stable for highly ill-conditioned inconsistent problems.
A thick-restart Lanczos type algorithm is proposed for Hermitian $J$-symmetric matrices. Since Hermitian $J$-symmetric matrices possess doubly degenerate spectra or doubly multiple eigenvalues with a simple relation between the degenerate eigenvector s, we can improve the convergence of the Lanczos algorithm by restricting the search space of the Krylov subspace to that spanned by one of each pair of the degenerate eigenvector pairs. We show that the Lanczos iteration is compatible with the $J$-symmetry, so that the subspace can be split into two subspaces that are orthogonal to each other. The proposed algorithm searches for eigenvectors in one of the two subspaces without the multiplicity. The other eigenvectors paired to them can be easily reconstructed with the simple relation from the $J$-symmetry. We test our algorithm on randomly generated small dense matrices and a sparse large matrix originating from a quantum field theory.
This paper presents a steady-state and transient heat conduction analysis framework using the polygonal scaled boundary finite element method (PSBFEM) with polygon/quadtree meshes. The PSBFEM is implemented with commercial finite element code Abaqus by the User Element Sub-routine (UEL) feature. The detailed implementation of the framework, defining the UEL element, and solving the stiffness/mass matrix by the eigenvalue decomposition are presented. Several benchmark problems from heat conduction are solved to validate the proposed implementation. Results show that the PSBFEM is reliable and accurate for solving heat conduction problems. Not only can the proposed implementation help engineering practitioners analyze the heat conduction problem using polygonal mesh in Abaqus, but it also provides a reference for developing the UEL to solve other problems using the scaled boundary finite element method.
300 - Xiaobing Feng , Yan Luo , Liet Vo 2021
This paper develops and analyzes a general iterative framework for solving parameter-dependent and random diffusion problems. It is inspired by the multi-modes method of [7,8] and the ensemble method of [19] and extends those methods into a more gene ral and unified framework. The main idea of the framework is to reformulate the underlying problem into another problem with a parameter-independent diffusion coefficient and a parameter-dependent (and solution-dependent) right-hand side, a fixed-point iteration is then employed to compute the solution of the reformulated problem. The main benefit of the proposed approach is that an efficient direct solver and a block Krylov subspace iterative solver can be used at each iteration, allowing to reuse the $LU$ matrix factorization or to do an efficient matrix-matrix multiplication for all parameters, which in turn results in significant computation saving. Convergence and rates of convergence are established for the iterative method both at the variational continuous level and at the finite element discrete level under some structure conditions. Several strategies for establishing reformulations of parameter-dependent and random diffusion problems are proposed and their computational complexity is analyzed. Several 1-D and 2-D numerical experiments are also provided to demonstrate the efficiency of the proposed iterative method and to validate the theoretical convergence results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا