ﻻ يوجد ملخص باللغة العربية
The depinning transition of elastic interfaces with an elastic interaction kernel decaying as $1/r^{d+sigma}$ is characterized by critical exponents which continuously vary with $sigma$. These exponents are expected to be unique and universal, except in the fully coupled ($-d<sigmale 0$) limit, where they depend on the smooth or cuspy nature of the microscopic pinning potential. By accurately comparing the depinning transition for cuspy and smooth potentials in a specially devised depinning model, we explain such peculiar limit in terms of the vanishing of the critical region for smooth potentials, as we decrease $sigma$ from the short-range ($sigma geq 2$) to the fully coupled case. Our results have practical implications for the determination of critical depinning exponents and identification of depinning universality classes in concrete experimental depinning systems with non-local elasticity, such as contact lines of liquids and fractures.
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p
We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a shor
We study many-body localization (MBL) in a one-dimensional system of spinless fermions with a deterministic aperiodic potential in the presence of long-range interactions or long-range hopping. Based on perturbative arguments there is a common belief
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical
Using molecular dynamics simulations, we report a study of the dynamics of two-dimensional vortex lattices driven over a disordered medium. In strong disorder, when topological order is lost, we show that the depinning transition is analogous to a se