ترغب بنشر مسار تعليمي؟ اضغط هنا

On the critical region of long-range depinning transitions

88   0   0.0 ( 0 )
 نشر من قبل Alejandro B. Kolton
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The depinning transition of elastic interfaces with an elastic interaction kernel decaying as $1/r^{d+sigma}$ is characterized by critical exponents which continuously vary with $sigma$. These exponents are expected to be unique and universal, except in the fully coupled ($-d<sigmale 0$) limit, where they depend on the smooth or cuspy nature of the microscopic pinning potential. By accurately comparing the depinning transition for cuspy and smooth potentials in a specially devised depinning model, we explain such peculiar limit in terms of the vanishing of the critical region for smooth potentials, as we decrease $sigma$ from the short-range ($sigma geq 2$) to the fully coupled case. Our results have practical implications for the determination of critical depinning exponents and identification of depinning universality classes in concrete experimental depinning systems with non-local elasticity, such as contact lines of liquids and fractures.



قيم البحث

اقرأ أيضاً

We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p roperties using renormalization group up to two-loop order. We show that beside the Gaussian fixed point the flow equations have a non trivial fixed point which is stable for $0.995<a<2$ and is characterized by the correlation length exponent $ u= 2/a + O((2-a)^3)$. Using bosonization, we also calculate the averaged square of the spin-spin correlation function and find the corresponding critical exponent $eta_2=1/2-(2-a)/4+O((2-a)^2)$.
We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a shor t-range model. We are therefore able to study both the mean-field and non-mean-field regimes. For one value of sigma, in the non-mean-field regime, we find evidence that the chiral glass transition temperature may be somewhat higher than the spin glass transition temperature. For the other values of sigma we see no evidence for this.
We study many-body localization (MBL) in a one-dimensional system of spinless fermions with a deterministic aperiodic potential in the presence of long-range interactions or long-range hopping. Based on perturbative arguments there is a common belief that MBL can exist only in systems with short-range interactions and short-range hopping. We analyze effects of power-law interactions and power-law hopping, separately, on a system which has all the single particle states localized in the absence of interactions. Since delocalization is driven by proliferation of resonances in the Fock space, we mapped this model to an effective Anderson model on a complex graph in the Fock space, and calculated the probability distribution of the number of resonances up to third order. Though the most-probable value of the number of resonances diverge for the system with long-range hopping ($t(r) sim t_0/r^alpha$ with $alpha < 2$), there is no enhancement of the number of resonances as the range of power-law interactions increases. This indicates that the long-range hopping delocalizes the many-body localized system but in contrast to this, there is no signature of delocalization in the presence of long-range interactions. We further provide support in favor of this analysis based on dynamics of the system after a quench starting from a charge density wave ordered state, level spacing statistics, return probability, participation ratio and Shannon entropy in the Fock space. We demonstrate that MBL persists in the presence of long-range interactions though long-range hopping with $1<alpha <2$ delocalizes the system partially, with all the states extended for $alpha <1$. Even in a system which has single-particle mobility edges in the non-interacting limit, turning on long-range interactions does not cause delocalization.
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical behavior is very similar to that of the short-range model in four dimensions. We also study a value of sigma for which we find the critical behavior to be compatible with that of the three dimensional model, though we have much less precision than in the four-dimensional case.
110 - Y. Fily , E. Olive , N. Di Scala 2009
Using molecular dynamics simulations, we report a study of the dynamics of two-dimensional vortex lattices driven over a disordered medium. In strong disorder, when topological order is lost, we show that the depinning transition is analogous to a se cond order critical transition: the velocity-force response at the onset of motion is continuous and characterized by critical exponents. Combining studies at zero and nonzero temperature and using a scaling analysis, two critical expo- nents are evaluated. We find vsim (F-F_c)^beta with beta=1.3pm0.1 at T=0 and F>F_c, and vsim T^{1/delta} with delta^{-1}=0.75pm0.1 at F=F_c, where F_c is the critical driving force at which the lattice goes from a pinned state to a sliding one. Both critical exponents and the scaling function are found to exhibit universality with regard to the pinning strength and different disorder realizations. Furthermore, the dynamics is shown to be chaotic in the whole critical region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا