ﻻ يوجد ملخص باللغة العربية
In arXiv:1709.07504 Ardila and Aguiar give a Hopf monoid structure on hypergraphs as well as a general construction of polynomial invariants on Hopf monoids. Using these results, we define in this paper a new polynomial invariant on hypergraphs. We give a combinatorial interpretation of this invariant on negative integers which leads to a reciprocity theorem on hypergraphs. Finally, we use this invariant to recover well-known invariants on other combinatorial objects (graphs, simplicial complexes, building sets etc) as well as the associated reciprocity theorems.
In arXiv:1709.07504 Aguiar and Ardila give a Hopf monoid structure on hypergraphs as well as a general construction of polynomial invariants on Hopf monoids. Using these results, we define in this paper a new polynomial invariant on hypergraphs. We g
From a recent paper, we recall the Hopf monoid structure on the supercharacters of the unipotent uppertriangular groups over a finite field. We give cancelation free formula for the antipode applied to the bases of class functions and power sum funct
Many combinatorial Hopf algebras $H$ in the literature are the functorial image of a linearized Hopf monoid $bf H$. That is, $H={mathcal K} ({bf H})$ or $H=overline{mathcal K} ({bf H})$. Unlike the functor $overline{mathcal K}$, the functor ${mathcal
We study Cohen-Macaulay Hopf monoids in the category of species. The goal is to apply techniques from topological combinatorics to the study of polynomial invariants arising from combinatorial Hopf algebras. Given a polynomial invariant arising from
We build, from the collection of all groups of unitriangular matrices, Hopf monoids in Joyals category of species. Such structure is carried by the collection of class function spaces on those groups, and also by the collection of superclass function