ﻻ يوجد ملخص باللغة العربية
Many combinatorial Hopf algebras $H$ in the literature are the functorial image of a linearized Hopf monoid $bf H$. That is, $H={mathcal K} ({bf H})$ or $H=overline{mathcal K} ({bf H})$. Unlike the functor $overline{mathcal K}$, the functor ${mathcal K}$ applied to ${bf H}$ may not preserve the antipode of ${bf H}$. In this case, one needs to consider the larger Hopf monoid ${bf L}times{bf H}$ to get $H={mathcal K} ({bf H})=overline{mathcal K}({bf L}times{bf H})$ and study the antipode in ${bf L}times{bf H}$. One of the main results in this paper provides a cancelation free and multiplicity free formula for the antipode of ${bf L}times{bf H}$. From this formula we obtain a new antipode formula for $H$. We also explore the case when ${bf H}$ is commutative and cocommutative. In this situation we get new antipode formulas that despite of not being cancelation free, can be used to obtain one for $overline{mathcal K}({bf H})$ in some cases. We recover as well many of the well-known cancelation free formulas in the literature. One of our formulas for computing the antipode in ${bf H}$ involves acyclic orientations of hypergraphs as the central tool. In this vein, we obtain polynomials analogous to the chromatic polynomial of a graph, and also identities parallel to Stanleys (-1)-color theorem. One of our examples introduces a {it chromatic} polynomial for permutations which counts increasing sequences of the permutation satisfying a pattern. We also study the statistic obtained after evaluating such polynomial at $-1$. Finally, we sketch $q$ deformations and geometric interpretations of our results. This last part will appear in a sequel paper in joint work with J. Machacek.
From a recent paper, we recall the Hopf monoid structure on the supercharacters of the unipotent uppertriangular groups over a finite field. We give cancelation free formula for the antipode applied to the bases of class functions and power sum funct
In arXiv:1709.07504 Aguiar and Ardila give a Hopf monoid structure on hypergraphs as well as a general construction of polynomial invariants on Hopf monoids. Using these results, we define in this paper a new polynomial invariant on hypergraphs. We g
In arXiv:1709.07504 Ardila and Aguiar give a Hopf monoid structure on hypergraphs as well as a general construction of polynomial invariants on Hopf monoids. Using these results, we define in this paper a new polynomial invariant on hypergraphs. We g
We extend Schaumanns theory of pivotal structures on fusion categories matched to a module category and of module traces developed in arXiv:1206.5716 to the case of non-semisimple tensor categories, and use it to study eigenvalues of the squared anti
In an earlier paper, the first two authors defined orientations on hypergraphs. Using this definition we provide an explicit bijection between acyclic orientations in hypergraphs and faces of hypergraphic polytopes. This allows us to obtain a geometr