ترغب بنشر مسار تعليمي؟ اضغط هنا

The AFLOW Library of Crystallographic Prototypes: Part 2

163   0   0.0 ( 0 )
 نشر من قبل Stefano Curtarolo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Materials discovery via high-throughput methods relies on the availability of structural prototypes, which are generally decorated with varying combinations of elements to produce potential new materials. To facilitate the automatic generation of these materials, we developed $textit{The AFLOW Library of Crystallographic Prototypes}$ $unicode{x2014}$ a collection of crystal prototypes that can be rapidly decorated using the AFLOW software. Part 2 of this work introduces an additional 302 crystal structure prototypes, including at least one from each of the 138 space groups not included in Part 1. Combined with Part 1, the entire library consists of 590 unique crystallographic prototypes covering all 230 space groups. We also present discussions of enantiomorphic space groups, Wigner-Seitz cells, the two-dimensional plane groups, and the various different space group notations used throughout crystallography. All structures $unicode{x2014}$ from both Part 1 and Part 2 $unicode{x2014}$ are listed in the web version of the library available at aflow.org/CrystalDatabase.



قيم البحث

اقرأ أيضاً

The AFLOW Library of Crystallographic Prototypes has been extended to include a total of 1,100 common crystal structural prototypes (510 new ones with Part 3), comprising all of the inorganic crystal structures defined in the seven-volume Strukturber icht series published in Germany from 1937 through 1943. We cover a history of the Strukturbericht designation system, the evolution of the system over time, and the first comprehensive index of inorganic Strukturbericht designations ever published.
The accelerated growth rate of repository entries in crystallographic databases makes it arduous to identify and classify their prototype structures. The open-source AFLOW-XtalFinder package was developed to solve this problem. It symbolically maps s tructures into standard designations following the AFLOW Prototype Encyclopedia and calculates the internal degrees of freedom consistent with the International Tables for Crystallography. To ensure uniqueness, structures are analyzed and compared via symmetry, local atomic geometries, and crystal mapping techniques, simultaneously grouping them by similarity. The software i. distinguishes distinct crystal prototypes and atom decorations, ii. determines equivalent spin configurations, iii. reveals compounds with similar properties, and iv. guides the discovery of unexplored materials. The operations are accessible through a Python module ready for workflows, and through command line syntax. All the 4+ million compounds in the AFLOW.org repositories are mapped to their ideal prototype, allowing users to search database entries via symbolic structure-type. Furthermore, 15,000 unique structures - sorted by prevalence - are extracted from the AFLOW-ICSD catalog to serve as future prototypes in the Encyclopedia.
The traditional paradigm for materials discovery has been recently expanded to incorporate substantial data driven research. With the intent to accelerate the development and the deployment of new technologies, the AFLOW Fleet for computational mater ials design automates high-throughput first principles calculations, and provides tools for data verification and dissemination for a broad community of users. AFLOW incorporates different computational modules to robustly determine thermodynamic stability, electronic band structures, vibrational dispersions, thermo-mechanical properties and more. The AFLOW data repository is publicly accessible online at aflow.org, with more than 1.7 million materials entries and a panoply of queryable computed properties. Tools to programmatically search and process the data, as well as to perform online machine learning predictions, are also available.
305 - R. Friedrich , M. Esters , C. Oses 2021
The computational design of materials with ionic bonds poses a critical challenge to thermodynamic modeling since density functional theory yields inaccurate predictions of their formation enthalpies. Progress requires leveraging physically insightfu l correction methods. The recently introduced coordination corrected enthalpies (CCE) method delivers accurate formation enthalpies with mean absolute errors close to room temperature thermal energy, i.e., 25meV/atom. The CCE scheme, depending on the number of cation-anion bonds and oxidation state of the cation, requires an automated analysis of the system to determine and apply the correction. Here, we present AFLOW-CCE -- our implementation of CCE into the AFLOW framework for computational materials design. It features a command line tool, a web interface and a Python environment. The workflow includes a structural analysis, automatically determines oxidation numbers, and accounts for temperature effects by parametrizing vibrational contributions to the formation enthalpy per bond.
55 - Michael E. Wall 2015
Standard X-ray crystallography methods use free-atom models to calculate mean unit cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared to models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra high-resolution X-ray crystallographic model building and refinement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا