ﻻ يوجد ملخص باللغة العربية
Standard X-ray crystallography methods use free-atom models to calculate mean unit cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared to models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra high-resolution X-ray crystallographic model building and refinement.
The self-consistent charge density functional tight-binding (DFTB) theory is a useful tool for realizing the electronic structures of large molecular complex systems. In this study, we analyze the electronic structure of C61, formed by fullerene C60
We investigate the electronic dynamics of a model organic photovoltaic (OPV) system consisting of polyphenylene vinylene (PPV) oligomers and a [6,6]-phenyl C61-butyric acid methylester (PCBM) blend using a mixed molecular mechanics/quantum mechanics
We present a detailed study of the energetics of water clusters (H$_2$O)$_n$ with $n le 6$, comparing diffusion Monte Carlo (DMC) and approximate density functional theory (DFT) with well converged coupled-cluster benchmarks. We use the many-body dec
Inspired by the formulation of quantum-electrodynamical time-dependent density functional theory (QED-TDDFT) by Rubio and coworkers, we propose an implementation that uses dimensionless amplitudes for describing the photonic contributions to QED-TDDF
The charge state of an ion provides a simplified electronic picture of the bonding in compounds, and heuristically explains the basic electronic structure of a system. Despite its usefulness, the physical and chemical definition of a charge state is