ترغب بنشر مسار تعليمي؟ اضغط هنا

COHERENT analysis of neutrino generalized interactions

67   0   0.0 ( 0 )
 نشر من قبل Diego Aristizabal
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Effective neutrino-quark generalized interactions are entirely determined by Lorentz invariance, so they include all possible four-fermion non derivative Lorentz structures. They contain neutrino-quark non-standard interactions as a subset, but span over a larger set that involves effective scalar, pseudoscalar, axial and tensor operators. Using recent COHERENT data, we derive constraints on the corresponding couplings by considering scalar, vector and tensor quark currents and assuming no lepton flavor dependence. We allow for mixed neutrino-quark Lorentz couplings and consider two types of scenarios in which: (i) one interaction at the nuclear level is present at a time, (ii) two interactions are simultaneously present. For scenarios (i) our findings show that scalar interactions are the most severely constrained, in particular for pseudoscalar-scalar neutrino-quark couplings. In contrast, tensor and non-standard vector interactions still enable for sizable effective parameters. We find as well that an extra vector interaction improves the data fit when compared with the result derived assuming only the standard model contribution. In scenarios (ii) the presence of two interactions relaxes the bounds and opens regions in parameter space that are otherwise closed, with the effect being more pronounced in the scalar-vector and scalar-tensor cases. We point out that barring the vector case, our results represent the most stringent bounds on effective neutrino-quark generalized interactions for mediator masses of order $sim 1,$GeV. They hold as well for larger mediator masses, case in which they should be compared with limits from neutrino deep-inelastic scattering data.



قيم البحث

اقرأ أيضاً

101 - Yong Du , Hao-Lin Li , Jian Tang 2021
We investigate the prospects of next-generation neutrino oscillation experiments DUNE, T2HK and JUNO including TAO within Standard Model Effective Field Theory (SMEFT). We also re-interpret COHERENT data in this framework. Considering both charged an d neutral current neutrino Non-Standard Interactions (NSIs), we analyse dimension-6 SMEFT operators and derive lower bounds to UV scale $Lambda$. The most powerful probe is obtained on ${cal O}_{{ledq}_{1211}}$ with $Lambda gtrsim$ 450,TeV due to the electron neutrino sample in T2HK near detector. We find DUNE and JUNO to be complementary to T2HK in exploring different subsets of SMEFT operators at about 25,TeV. We conclude that near detectors play a significant role in each experiment. We also find COHERENT with CsI and LAr targets to be sensitive to new physics up to $sim$900,GeV.
The cross section for coherent elastic neutrino-nucleus scattering (CE$ u$NS) depends on the response of the target nucleus to the external current, in the Standard Model (SM) mediated by the exchange of a $Z$ boson. This is typically subsumed into a n object called the weak form factor of the nucleus. Here, we provide results for this form factor calculated using the large-scale nuclear shell model for a wide range of nuclei of relevance for current CE$ u$NS experiments, including cesium, iodine, argon, fluorine, sodium, germanium, and xenon. In addition, we provide the responses needed to capture the axial-vector part of the cross section, which does not scale coherently with the number of neutrons, but may become relevant for the SM prediction of CE$ u$NS on target nuclei with nonzero spin. We then generalize the formalism allowing for contributions beyond the SM. In particular, we stress that in this case, even for vector and axial-vector operators, the standard weak form factor does not apply anymore, but needs to be replaced by the appropriate combination of the underlying nuclear structure factors. We provide the corresponding expressions for vector, axial-vector, but also (pseudo-)scalar, tensor, and dipole effective operators, including two-body-current effects as predicted from chiral effective field theory. Finally, we update the spin-dependent structure factors for dark matter scattering off nuclei according to our improved treatment of the axial-vector responses.
101 - Xianguo Lu , Jan T. Sobczyk 2019
In the study of neutrino and antineutrino interactions in the GeV regime, kinematic imbalances of the final-state particles have sensitivities to different nuclear effects. Previous ideas based on neutrino quasielastic interactions [Phys. Rev. C94, 0 15503 (2016), Phys. Rev. C95, 065501 (2017)] are now generalized to antineutrino quasielastic interactions, as well as neutrino and antineutrino pion productions. Measurements of these generalized final-state correlations could provide unique and direct constraints on the nuclear response inherently different for neutrinos and antineutrinos, and therefore delineate effects that could mimic charge-parity violation in neutrino oscillations.
179 - O. G. Miranda , H. Nunokawa 2015
Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino param eters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.
We study future coherent elastic neutrino-nucleus scattering (CE$ u$NS) modifications from a variety of possible models at the Coherent CAPTAIN Mills (CCM) experiment at Los Alamos. We show that large regions of Non-Standard Neutrino Interaction (NSI ) parameter space will be excluded rapidly, and that stringent new bounds on the gauge coupling in $Z$ models will also be placed. As a result, CCM will be able to rule out LMA-D solutions for a large class of models with MeV-scale mediators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا