ﻻ يوجد ملخص باللغة العربية
A radix sort tree arises when storing distinct infinite binary words in the leaves of a binary tree such that for any two words their common prefixes coincide with the common prefixes of the corresponding two leaves. If one deletes the out-degree $1$ vertices in the radix sort tree and closes up the gaps, then the resulting PATRICIA tree maintains all the information that is necessary for sorting the infinite words into lexicographic order. We investigate the PATRICIA chains -- the tree-valued Markov chains that arise when successively building the PATRICIA trees for the collection of infinite binary words $Z_1,ldots, Z_n$, $n=1,2,ldots$, where the source words $Z_1, Z_2,ldots$ are independent and have a common diffuse distribution on ${0,1}^infty$. It turns out that the PATRICIA chains share a common collection of backward transition probabilities and that these are the same as those of a chain introduced by Remy for successively generating uniform random binary trees with larger and larger numbers of leaves. This means that the infinite bridges of any PATRICIA chain (that is, the chains obtained by conditioning a PATRICIA chain on its remote future) coincide with the infinite bridges of the Remy chain. The infinite bridges of the Remy chain are characterized concretely in Evans, Grubel, and Wakolbinger 2017 and we recall that characterization here while adding some details and clarifications.
Spectral decomposition of the covariance operator is one of the main building blocks in the theory and applications of Gaussian processes. Unfortunately it is notoriously hard to derive in a closed form. In this paper we consider the eigenproblem for
In this paper we study fluctuations of extreme particles of nonintersecting Brownian bridges starting from $a_1leq a_2leq cdots leq a_n$ at time $t=0$ and ending at $b_1leq b_2leq cdotsleq b_n$ at time $t=1$, where $mu_{A_n}=(1/n)sum_{i}delta_{a_i},
Let $U$ be a Haar distributed matrix in $mathbb U(n)$ or $mathbb O (n)$. In a previous paper, we proved that after centering, the two-parameter process [T^{(n)} (s,t) = sum_{i leq lfloor ns rfloor, j leq lfloor ntrfloor} |U_{ij}|^2] converges in dist
We show that the squared maximal height of the top path among $N$ non-intersecting Brownian bridges starting and ending at the origin is distributed as the top eigenvalue of a random matrix drawn from the Laguerre Orthogonal Ensemble. This result can
Let U be a Haar distributed unitary matrix in U(n)or O(n). We show that after centering the double index process $$ W^{(n)} (s,t) = sum_{i leq lfloor ns rfloor, j leq lfloor ntrfloor} |U_{ij}|^2 $$ converges in distribution to the bivariate tied-down