ﻻ يوجد ملخص باللغة العربية
Let U be a Haar distributed unitary matrix in U(n)or O(n). We show that after centering the double index process $$ W^{(n)} (s,t) = sum_{i leq lfloor ns rfloor, j leq lfloor ntrfloor} |U_{ij}|^2 $$ converges in distribution to the bivariate tied-down Brownian bridge. The proof relies on the notion of second order freeness.
Let $U$ be a Haar distributed matrix in $mathbb U(n)$ or $mathbb O (n)$. In a previous paper, we proved that after centering, the two-parameter process [T^{(n)} (s,t) = sum_{i leq lfloor ns rfloor, j leq lfloor ntrfloor} |U_{ij}|^2] converges in dist
In this paper we study fluctuations of extreme particles of nonintersecting Brownian bridges starting from $a_1leq a_2leq cdots leq a_n$ at time $t=0$ and ending at $b_1leq b_2leq cdotsleq b_n$ at time $t=1$, where $mu_{A_n}=(1/n)sum_{i}delta_{a_i},
We consider the empirical eigenvalue distribution of an $mtimes m$ principal submatrix of an $ntimes n$ random unitary matrix distributed according to Haar measure. For $n$ and $m$ large with $frac{m}{n}=alpha$, the empirical spectral measure is well
We consider the empirical eigenvalue distribution of an $mtimes m$ principle submatrix of an $ntimes n$ random unitary matrix distributed according to Haar measure. Earlier work of Petz and Reffy identified the limiting spectral measure if $frac{m}{n
We show that the squared maximal height of the top path among $N$ non-intersecting Brownian bridges starting and ending at the origin is distributed as the top eigenvalue of a random matrix drawn from the Laguerre Orthogonal Ensemble. This result can