ﻻ يوجد ملخص باللغة العربية
Estimation-of-distribution algorithms (EDAs) are general metaheuristics used in optimization that represent a more recent alternative to classical approaches like evolutionary algorithms. In a nutshell, EDAs typically do not directly evolve populations of search points but build probabilistic models of promising solutions by repeatedly sampling and selecting points from the underlying search space. Recently, there has been made significant progress in the theoretical understanding of EDAs. This article provides an up-to-date overview of the most commonly analyzed EDAs and the most recent theoretical results in this area. In particular, emphasis is put on the runtime analysis of simple univariate EDAs, including a description of typical benchmark functions and tools for the analysis. Along the way, open problems and directions for future research are described.
Estimation-of-distribution algorithms (EDAs) are randomized search heuristics that create a probabilistic model of the solution space, which is updated iteratively, based on the quality of the solutions sampled according to the model. As previous wor
This study analyzes performance of several genetic and evolutionary algorithms on randomly generated NK fitness landscapes with various values of n and k. A large number of NK problem instances are first generated for each n and k, and the global opt
The aim of this work is studying the use of copulas and vines in the optimization with Estimation of Distribution Algorithms (EDAs). Two EDAs are built around the multivariate product and normal copulas, and other two are based on pair-copula decompo
The paper analyzes the scalability of multiobjective estimation of distribution algorithms (MOEDAs) on a class of boundedly-difficult additively-separable multiobjective optimization problems. The paper illustrates that even if the linkage is correct
State estimation is necessary in diagnosing anomalies in Water Demand Systems (WDS). In this paper we present a neural network performing such a task. State estimation is performed by using optimization, which tries to reconcile all the available inf