ﻻ يوجد ملخص باللغة العربية
We suggest a rasterization pipeline tailored towards the need of head-mounted displays (HMD), where latency and field-of-view requirements pose new challenges beyond those of traditional desktop displays. Instead of rendering and warping for low latency, or using multiple passes for foveation, we show how both can be produced directly in a single perceptual rasterization pass. We do this with per-fragment ray-casting. This is enabled by derivations of tight space-time-fovea pixel bounds, introducing just enough flexibility for requisite geometric tests, but retaining most of the the simplicity and efficiency of the traditional rasterizaton pipeline. To produce foveated images, we rasterize to an image with spatially varying pixel density. To reduce latency, we extend the image formation model to directly produce rolling images where the time at each pixel depends on its display location. Our approach overcomes limitations of warping with respect to disocclusions, object motion and view-dependent shading, as well as geometric aliasing artifacts in other foveated rendering techniques. A set of perceptual user studies demonstrates the efficacy of our approach.
In this article, we explore the availability of head-mounted display (HMD) devices which can be coupled in a seamless way with P300-based brain-computer interfaces (BCI) using electroencephalography (EEG). The P300 is an event-related potential appea
Augmented and virtual reality is being deployed in different fields of applications. Such applications might involve accessing or processing critical and sensitive information, which requires strict and continuous access control. Given that Head-Moun
In this paper, we focus on subjective and objective Point Cloud Quality Assessment (PCQA) in an immersive environment and study the effect of geometry and texture attributes in compression distortion. Using a Head-Mounted Display (HMD) with six degre
Recent research has proposed teleoperation of robotic and aerial vehicles using head motion tracked by a head-mounted display (HMD). First-person views of the vehicles are usually captured by onboard cameras and presented to users through the display
With the mounting global interest for optical see-through head-mounted displays (OST-HMDs) across medical, industrial and entertainment settings, many systems with different capabilities are rapidly entering the market. Despite such variety, they all