ترغب بنشر مسار تعليمي؟ اضغط هنا

Alignment of the Virtual Scene to the Tracking Space of a Mixed Reality Head-Mounted Display

79   0   0.0 ( 0 )
 نشر من قبل Long Qian
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the mounting global interest for optical see-through head-mounted displays (OST-HMDs) across medical, industrial and entertainment settings, many systems with different capabilities are rapidly entering the market. Despite such variety, they all require display calibration to create a proper mixed reality environment. With the aid of tracking systems, it is possible to register rendered graphics with tracked objects in the real world. We propose a calibration procedure to properly align the coordinate system of a 3D virtual scene that the user sees with that of the tracker. Our method takes a blackbox approach towards the HMD calibration, where the trackers data is its input and the 3D coordinates of a virtual object in the observers eye is the output; the objective is thus to find the 3D projection that aligns the virtual content with its real counterpart. In addition, a faster and more intuitive version of this calibration is introduced in which the user simultaneously aligns multiple points of a single virtual 3D object with its real counterpart; this reduces the number of required repetitions in the alignment from 20 to only 4, which leads to a much easier calibration task for the user. In this paper, both internal (HMD camera) and external tracking systems are studied. We perform experiments with Microsoft HoloLens, taking advantage of its self localization and spatial mapping capabilities to eliminate the requirement for line of sight from the HMD to the object or external tracker. The experimental results indicate an accuracy of up to 4 mm in the average reprojection error based on two separate evaluation methods. We further perform experiments with the internal tracking on the Epson Moverio BT-300 to demonstrate that the method can provide similar results with other HMDs.



قيم البحث

اقرأ أيضاً

414 - Anton Andreev 2019
In this article, we explore the availability of head-mounted display (HMD) devices which can be coupled in a seamless way with P300-based brain-computer interfaces (BCI) using electroencephalography (EEG). The P300 is an event-related potential appea ring about 300ms after the onset of a stimulation. The recognition of this potential on the ongoing EEG requires the knowledge of the exact onset of the stimuli. In other words, the stimulations presented in the HMD must be perfectly synced with the acquisition of the EEG signal. This is done through a process called tagging. The tagging must be performed in a reliable and robust way so as to guarantee the recognition of the P300 and thus the performance of the BCI. An HMD device should also be able to render images fast enough to allow an accurate perception of the stimulations, and equally to not perturb the acquisition of the EEG signal. In addition, an affordable HMD device is needed for both research and entertainment purposes. In this study, we selected and tested two HMD configurations.
Recent research has proposed teleoperation of robotic and aerial vehicles using head motion tracked by a head-mounted display (HMD). First-person views of the vehicles are usually captured by onboard cameras and presented to users through the display panels of HMDs. This provides users with a direct, immersive and intuitive interface for viewing and control. However, a typically overlooked factor in such designs is the latency introduced by the vehicle dynamics. As head motion is coupled with visual updates in such applications, visual and control latency always exists between the issue of control commands by head movements and the visual feedback received at the completion of the attitude adjustment. This causes a discrepancy between the intended motion, the vestibular cue and the visual cue and may potentially result in simulator sickness. No research has been conducted on how various levels of visual and control latency introduced by dynamics in robots or aerial vehicles affect users performance and the degree of simulator sickness elicited. Thus, it is uncertain how much performance is degraded by latency and whether such designs are comfortable from the perspective of users. To address these issues, we studied a prototyped scenario of a head motion controlled quadcopter using an HMD. We present a virtual reality (VR) paradigm to systematically assess the effects of visual and control latency in simulated drone control scenarios.
Optical see-though head-mounted displays (OST HMDs) are one of the key technologies for merging virtual objects and physical scenes to provide an immersive mixed reality (MR) environment to its user. A fundamental limitation of HMDs is, that the user itself cannot be augmented conveniently as, in casual posture, only the distal upper extremities are within the field of view of the HMD. Consequently, most MR applications that are centered around the user, such as virtual dressing rooms or learning of body movements, cannot be realized with HMDs. In this paper, we propose a novel concept and prototype system that combines OST HMDs and physical mirrors to enable self-augmentation and provide an immersive MR environment centered around the user. Our system, to the best of our knowledge the first of its kind, estimates the users pose in the virtual image generated by the mirror using an RGBD camera attached to the HMD and anchors virtual objects to the reflection rather than the user directly. We evaluate our system quantitatively with respect to calibration accuracy and infrared signal degradation effects due to the mirror, and show its potential in applications where large mirrors are already an integral part of the facility. Particularly, we demonstrate its use for virtual fitting rooms, gaming applications, anatomy learning, and personal fitness. In contrast to competing devices such as LCD-equipped smart mirrors, the proposed system consists of only an HMD with RGBD camera and, thus, does not require a prepared environment making it very flexible and generic. In future work, we will aim to investigate how the system can be optimally used for physical rehabilitation and personal training as a promising application.
Efficient motion intent communication is necessary for safe and collaborative work environments with collocated humans and robots. Humans efficiently communicate their motion intent to other humans through gestures, gaze, and social cues. However, ro bots often have difficulty efficiently communicating their motion intent to humans via these methods. Many existing methods for robot motion intent communication rely on 2D displays, which require the human to continually pause their work and check a visualization. We propose a mixed reality head-mounted display visualization of the proposed robot motion over the wearers real-world view of the robot and its environment. To evaluate the effectiveness of this system against a 2D display visualization and against no visualization, we asked 32 participants to labeled different robot arm motions as either colliding or non-colliding with blocks on a table. We found a 16% increase in accuracy with a 62% decrease in the time it took to complete the task compared to the next best system. This demonstrates that a mixed-reality HMD allows a human to more quickly and accurately tell where the robot is going to move than the compared baselines.
Virtual Reality (VR) headsets can open opportunities for users to accomplish complex tasks on large virtual displays, using compact setups. However, interacting with large virtual displays using existing interaction techniques might cause fatigue, es pecially for precise manipulations, due to the lack of physical surfaces. We designed VXSlate, an interaction technique that uses a large virtual display, as an expansion of a tablet. VXSlate combines a users headmovement, as tracked by the VR headset, and touch interaction on the tablet. The users headmovement position both a virtual representation of the tablet and of the users hand on the large virtual display. The users multi-touch interactions perform finely-tuned content manipulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا