ﻻ يوجد ملخص باللغة العربية
In this work, we study the antiferromagnetic (AFM) spin dynamics in heterostructures which consist of two kinds of AFM layers. Our micromagnetic simulations demonstrate that the AFM domain-wall (DW) can be driven by the other one (driven by field-like Neel spin-orbit torque, Phys. Rev. Lett. 117, 017202 (2016)) through the interface couplings. Furthermore, the two DWs detach from each other when the torque increases above a critical value. The critical field and the highest possible velocity of the DW depending on several factors are revealed and discussed. Bases on the calculated results, we propose a method to modulate efficiently the multi DWs in antiferromagnet, which definitely provides useful information for future AFM spintronics device design.
Searching for new methods controlling antiferromagnetic (AFM) domain wall is one of the most important issues for AFM spintronic device operation. In this work, we study theoretically the domain wall motion of an AFM nanowire, driven by the axial ani
In this work, we study the microwave field driven antiferromagnetic domain wall motion in an antiferromagnetic nanowire, using the numerical calculations based on a classical Heisenberg spin model. We show that a proper combination of a static magnet
In this work, we study the rotating magnetic field driven domain wall (DW) motion in antiferromagnetic nanowires, using the micromagnetic simulations of the classical Heisenberg spin model. We show that in low frequency region, the rotating field alo
An antiferromagnetic domain wall in a thermal gradient is found to experience a force towards colder regions upon the application of a uniform magnetic field along the easy axis. This force increases with the strength of the applied field and, for su
We consider a domain wall in the mesoscopic quasi-one-dimensional sample (wire or stripe) of weakly anisotropic two-sublattice antiferromagnet, and estimate the probability of tunneling between two domain wall states with different chirality. Topolog