ﻻ يوجد ملخص باللغة العربية
It was realized recently that the chordal, radial and dipolar SLEs are special cases of a general slit holomorphic stochastic flow. We characterize those slit holomorphic stochastic flows which generate level lines of the Gaussian free field. In particular, we describe the modifications of the Gaussian free field (GFF) corresponding to the chordal and dipolar SLE with drifts. Finally, we develop a version of conformal field theory based on the background charge and Dirichlet boundary condition modifications of GFF and present martingale-observables for these types of SLEs.
For a large class of amenable transient weighted graphs $G$, we prove that the sign clusters of the Gaussian free field on $G$ fall into a regime of strong supercriticality, in which two infinite sign clusters dominate (one for each sign), and finite
These lecture notes offer a gentle introduction to the two-dimensional Discrete Gaussian Free Field with particular attention paid to the scaling limits of the level sets at heights proportional to the absolute maximum. The bulk of the text is based
The Rohde--Schramm theorem states that Schramm--Loewner Evolution with parameter $kappa$ (or SLE$_kappa$ for short) exists as a random curve, almost surely, if $kappa eq 8$. Here we give a new and concise proof of the result, based on the Liouville
For the Discrete Gaussian Free Field (DGFF) in domains $D_Nsubseteqmathbb Z^2$ arising, via scaling by $N$, from nice domains $Dsubseteqmathbb R^2$, we study the statistics of the values order-$sqrt{log N}$ below the absolute maximum. Encoded as a po
We consider the discrete Gaussian Free Field (DGFF) in scaled-up (square-lattic