ﻻ يوجد ملخص باللغة العربية
The objective of this paper is to study the local time and Tanaka formula of symmetric $G$-martingales. We introduce the local time of $G$-martingales and show that they belong to $G$-expectation space $L_{G}^{2}(Omega _{T})$. The bicontinuous modification of local time is obtained. We finally give the Tanaka formula for convex functions of $G$-martingales.
We study strict local martingales via h-transforms, a method which first appeared in Delbaen-Schachermayer. We show that strict local martingales arise whenever there is a consistent family of change of measures where the two measures are not equival
We provide a characterization of the family of non-negative local martingales that have continuous running supremum and vanish at infinity. This is done by describing the class of random times that identify the times of maximum of such processes. In
These notes are the second half of the contents of the course given by the second author at the Bachelier Seminar (8-15-22 February 2008) at IHP. They also correspond to topics studied by the first author for her Ph.D.thesis.
In this paper, we prove the Girsanov formula for $G$-Brownian motion without the non-degenerate condition. The proof is based on the perturbation method in the nonlinear setting by constructing a product space of the $G$-expectation space and a linea
We consider the stochastic optimal control problem for the dynamical system of the stochastic differential equation driven by a local martingale with a spatial parameter. Assuming the convexity of the control domain, we obtain the stochastic maximum