ﻻ يوجد ملخص باللغة العربية
We study strict local martingales via h-transforms, a method which first appeared in Delbaen-Schachermayer. We show that strict local martingales arise whenever there is a consistent family of change of measures where the two measures are not equivalent to one another. Several old and new strict local martingales are identified. We treat examples of diffusions with various boundary behavior, size-bias sampling of diffusion paths, and non-colliding diffusions. A multidimensional generalization to conformal strict local martingales is achieved through Kelvin transform. As curious examples of non-standard behavior, we show by various examples that strict local martingales do not behave uniformly when the function (x-K)^+ is applied to them. Implications to the recent literature on financial bubbles are discussed.
We provide a characterization of the family of non-negative local martingales that have continuous running supremum and vanish at infinity. This is done by describing the class of random times that identify the times of maximum of such processes. In
We extend the notion of Gibbsianness for mean-field systems to the set-up of general (possibly continuous) local state spaces. We investigate the Gibbs properties of systems arising from an initial mean-field Gibbs measure by application of given loc
The objective of this paper is to study the local time and Tanaka formula of symmetric $G$-martingales. We introduce the local time of $G$-martingales and show that they belong to $G$-expectation space $L_{G}^{2}(Omega _{T})$. The bicontinuous modifi
We consider the stochastic optimal control problem for the dynamical system of the stochastic differential equation driven by a local martingale with a spatial parameter. Assuming the convexity of the control domain, we obtain the stochastic maximum
We build a sequence of empirical measures on the space D(R_+,R^d) of R^d-valued c`adl`ag functions on R_+ in order to approximate the law of a stationary R^d-valued Markov and Feller process (X_t). We obtain some general results of convergence of thi