ﻻ يوجد ملخص باللغة العربية
Nanophotonic objects like plasmonic nanoparticles and colloidal quantum dots can complement the functionality of molecular dyes in biomedical optics. However, their operation is usually governed by spontaneous processes, which results in broad spectral features and limited signal-to-noise ratio, thus restricting opportunities for spectral multiplexing and sensing. Lasers provide the ultimate spectral definition and background suppression, and their integration with cells has recently been demonstrated. However, laser size and threshold remain problematic. Here, we report on the design, high-throughput fabrication and intracellular integration of semiconductor nanodisk lasers. By exploiting the large optical gain and high refractive index of GaInP/AlGaInP quantum wells, we obtain lasers with volumes 1000-fold smaller than the eukaryotic nucleus ($V_{laser}$<0.1 $mu$m$^3$), lasing thresholds 500-fold below the pulse energies typically used in two-photon microscopy ($E_{th} approx $0.13 pJ), and excellent spectral stability (<50 pm wavelength shift). Multiplexed labelling with these lasers allows cells-tracking through micro-pores, thus providing a powerful tool to study cell migration and cancer invasion.
Diffusion is a fundamental phenomenon that occurs ubiquitously in nature and remains the subject of continuous research interest. Understanding diffusion is a key to understanding leaving systems. In this Chapter, I discuss diffusion of macromolecule
We report on the higher-order photon correlations of a high-$beta$ nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single photon detector we measured g$^{(n)}(vec{0})$ with $n$=2,3,4. All orders
Non-linear dynamical systems involving small populations of individuals may sustain oscillations in the population densities arising from the discrete changes in population numbers due to random events. By applying these ideas to nanolasers operating
We present an electrophoretic platform based on 3D hollow nanoelectrodes capable of controlling and quantifying the intracellular delivery of single nanoparticles in single selected cells by surface-enhanced Raman spectroscopy (SERS). The gold-coated
Using a fully stochastic numerical scheme, we investigate the behaviour of a nanolaser in the low-coherence regime at the transition between spontaneous emission and lasing under the influence of intensity feedback. Studying the input-output curves a