ﻻ يوجد ملخص باللغة العربية
We present an electrophoretic platform based on 3D hollow nanoelectrodes capable of controlling and quantifying the intracellular delivery of single nanoparticles in single selected cells by surface-enhanced Raman spectroscopy (SERS). The gold-coated hollow nanoelectrode has a sub-femtoliter inner volume that allows the confinement and enhancement of electromagnetic fields upon laser illumination to distinguish the SERS signals of a single nanoparticle flowing through the nanoelectrode. The tight wrapping of cell membranes around the nanoelectrodes enables effective membrane electroporation such that single gold nanorods are delivered into a living cell with a delivery rate subject to the applied bias voltage. The capability of the 3D hollow nanoelectrodes to porate cells and reveal single emitters from the background under live flow is promising for the analysis of both intracellular delivery and sampling.
Reactive oxygen and nitrogen species (ROS and RNS) play important roles in various physiological processes (e.g., phagocytosis) and pathological conditions (e.g., cancer). The primary ROS/RNS, viz., hydrogen peroxide, peroxynitrite ion, nitric oxide,
Strain engineering is one of the most effective approaches to manipulate the physical state of materials, control their electronic properties, and enable crucial functionalities. Because of their rich phase diagrams arising from competing ground stat
Single atoms form a model system for understanding the limits of single photon detection. Here, we develop a non-Markov theory of single-photon absorption by a two-level atom to place limits on the absorption (transduction) time. We show the existenc
We investigated the ability of diamond nanoparticles (nanodiamonds, NDs) to deliver small interfering RNA (siRNA) in Ewing sarcoma cells, in the perspective of in vivo anti-cancer nucleic acid drug delivery. siRNA was adsorbed onto NDs previously coa
Numerous biological approaches are available to characterise the mechanisms which govern the formation of human embryonic stem cell (hESC) colonies. To understand how the kinematics of single and pairs of hESCs impact colony formation, we study their