ﻻ يوجد ملخص باللغة العربية
It is known that in the theory of light scalar fields during inflation, correlation functions suffer from infrared (IR) divergences or large IR loop corrections, leading to the breakdown of perturbation theory. In order to understand the physical meaning of such IR enhancement, we investigate the stochastic properties of an effective equation of motion (EoM) for long-wavelength modes of a canonically normalized light scalar field $phi$ with a general sufficiently flat interaction potential on de Sitter background. Firstly, we provide an alternative refined derivation of the effective action for long-wavelength modes which leads to the effective EoM that correctly reproduces all the IR correlation functions in a good approximation at a late time, by integrating out short-wavelength modes. Next, under the assumption that one can neglect non-local correlations in the influence functional exceeding the coarse-graining scale, we show that the effective EoM for IR modes of the average field in Schwinger-Keldysh formalism $phi^<_c$ can be interpreted as a classical stochastic process in the present model.
We study to what extent the spectral index $n_s$ and the tensor-to-scalar ratio $r$ determine the field excursion $Deltaphi$ during inflation. We analyse the possible degeneracy of $Delta phi$ by comparing three broad classes of inflationary models,
We reply to the recent criticism by Garriga and Tanaka of our proposal that quantum gravitational loop corrections may lead to a secular screening of the effective cosmological constant. Their argument rests upon a renormalization scheme in which the
Caustic singularity formations in shift-symmetric $k$-essence and Horndeski theories on a fixed Minkowski spacetime were recently argued. In $n$ dimensions, this singularity is the $(n-2)$-dimensional plane in spacetime at which second derivatives of
Inertial observers in de Sitter are surrounded by a horizon and see thermal fluctuations. To them, a massless scalar field appears to follow a random motion but any attractive potential, no matter how weak, will eventually stabilize the field. We stu
We find exact static stringy solutions of Horava-Lifshitz gravity with the projectability condition but imposing the detailed balance condition near the UV fixed point, and propose a method on constraining the possible pattern of flows in Horava-Lifs