ترغب بنشر مسار تعليمي؟ اضغط هنا

Can CMB data constrain the inflationary field range?

172   0   0.0 ( 0 )
 نشر من قبل Marco Scalisi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study to what extent the spectral index $n_s$ and the tensor-to-scalar ratio $r$ determine the field excursion $Deltaphi$ during inflation. We analyse the possible degeneracy of $Delta phi$ by comparing three broad classes of inflationary models, with different dependence on the number of e-foldings $N$, to benchmark models of chaotic inflation with monomial potentials. The classes discussed cover a large set of inflationary single field models. We find that the field range is not uniquely determined for any value of $(n_s, r)$; one can have the same predictions as chaotic inflation and a very different $Delta phi$. Intriguingly, we find that the field range cannot exceed an upper bound that appears in different classes of models. Finally, $Delta phi$ can even become sub-Planckian, but this requires to go beyond the single-field slow-roll paradigm.



قيم البحث

اقرأ أيضاً

We show that a combination of the simplest $alpha$-attractors and KKLTI models related to Dp-brane inflation covers most of the area in the ($n_{s}$, $r$) space favored by Planck 2018. For $alpha$-attractor models, there are discrete targets $3alpha= 1,2,...,7$, predicting 7 different values of $r = 12alpha/N^{2}$ in the range $10^{-2} gtrsim r gtrsim 10^{-3}$. In the small $r$ limit, $alpha$-attractors and Dp-brane inflation models describe vertical $beta$-stripes in the ($n_{s}$, $r$) space, with $n_{s}=1-beta/N$, $beta=2, {5over 3},{8over 5}, {3over 2},{4over 3}$. A phenomenological description of these models and their generalizations can be achieved in the context of pole inflation. Most of the $1sigma$ area in the ($n_{s}$, $r$) space favored by Planck 2018 can be covered models with $beta = 2$ and $beta = 5/3$. Future precision data on $n_s$ may help to discriminate between these models even if the precision of the measurement of $r$ is insufficient for the discovery of gravitational waves produced during inflation.
In a series of recent papers Kallosh, Linde, and collaborators have provided a unified description of single-field inflation with several types of potentials, ranging from power law to supergravity, in terms of just one parameter $alpha$. These so-ca lled $alpha$-attractors predict a spectral index $n_{s}$ and a tensor-to-scalar ratio $r$, which are fully compatible with the latest Planck data. The only common feature of all $alpha$-attractors is a non-canonical kinetic term with a pole, and a potential analytic around the pole. In this paper, starting from the same Einstein frame with a non-canonical scalar kinetic energy, we explore the case of non-analytic potentials. We find the functional form that corresponds to quasi-scale invariant gravitational models in the Jordan frame, characterised by a universal relation between $r$ and $n_{s}$ that fits the observational data but is clearly distinct from the one of the $alpha$-attractors. It is known that the breaking of the exact classical scale-invariance in the Jordan frame can be attributed to one-loop corrections. Therefore we conclude that there exists a class of non-analytic potentials in the non-canonical Einstein frame that are physically equivalent to a class of models in the Jordan frame, with scale-invariance softly broken by one-loop quantum corrections.
We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT-scenario and cosmological $alpha$-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflation ary regime; however, we demonstrate that this generically does not happen for $alpha$-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The gravitino mass is independent from the inflationary scale with no fine-tuning of the parameters. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.
Scattering amplitudes at weak coupling are highly constrained by Lorentz invariance, locality and unitarity, and depend on model details only through coupling constants and particle content. In this paper, we develop an understanding of inflationary correlators which parallels that of flat-space scattering amplitudes. Specifically, we study slow-roll inflation with weak couplings to extra massive particles, for which all correlators are controlled by an approximate conformal symmetry on the boundary of the spacetime. After classifying all possible contact terms in de Sitter space, we derive an analytic expression for the four-point function of conformally coupled scalars mediated by the tree-level exchange of massive scalars. Conformal symmetry implies that the correlator satisfies a pair of differential equations with respect to spatial momenta, encoding bulk time evolution in purely boundary terms. The absence of unphysical singularities completely fixes this correlator. A spin-raising operator relates it to the correlators associated with the exchange of particles with spin, while weight-shifting operators map it to the four-point function of massless scalars. We explain how these de Sitter four-point functions can be perturbed to obtain inflationary three-point functions. We reproduce many classic results in the literature and provide a complete classification of all inflationary three- and four-point functions arising from weakly broken conformal symmetry. The inflationary bispectrum associated with the exchange of particles with arbitrary spin is completely characterized by the soft limit of the simplest scalar-exchange four-point function of conformally coupled scalars and a series of contact terms. Finally, we demonstrate that the inflationary correlators contain flat-space scattering amplitudes via a suitable analytic continuation of the external momenta.
We study the implications of the recently proposed Trans-Planckian Censorship Conjecture (TCC) for early universe cosmology and in particular inflationary cosmology. The TCC leads to the conclusion that if we want inflationary cosmology to provide a successful scenario for cosmological structure formation, the energy scale of inflation has to be lower than $10^9$ GeV. Demanding the correct amplitude of the cosmological perturbations then forces the generalized slow-roll parameter $epsilon$ of the model to be very small ($<10^{-31}$). This leads to the prediction of a negligible amplitude of primordial gravitational waves. For slow-roll inflation models, it also leads to severe fine tuning of initial conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا