ترغب بنشر مسار تعليمي؟ اضغط هنا

An upper-limit on the linear polarization fraction of the GW170817 radio continuum

90   0   0.0 ( 0 )
 نشر من قبل Alessandra Corsi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alessandra Corsi




اسأل ChatGPT حول البحث

We present late-time radio observations of GW170817, the first binary neutron star merger discovered through gravitational waves by the advanced LIGO and Virgo detectors. Our observations, carried out with the Karl G. Jansky Very Large Array, were optimized to detect polarized radio emission, and thus to constrain the linear polarization fraction of GW170817. At an epoch of ~244 days after the merger, we rule out linearly polarized emission above a fraction of ~12% at a frequency of 2.8 GHz (99% confidence). Within the structured jet scenario (a.k.a. successful jet plus cocoon system) for GW170817, the derived upper-limit on the radio continuum linear polarization fraction strongly constrains the magnetic field configuration in the shocked ejecta. We show that our results for GW170817 are compatible with the low level of linear polarization found in afterglows of cosmological long gamma-ray bursts. Finally, we discuss our findings in the context of future expectations for the study of radio counterparts of binary neutron star mergers identified by ground-based gravitational-wave detectors.



قيم البحث

اقرأ أيضاً

130 - D. Cseh , P. Kaaret , S. Corbel 2010
We present the results of deep radio observations with the Australia Telescope Compact Array (ATCA) of the globular cluster NGC 6388. We show that there is no radio source detected (with a r.m.s. noise level of 27 uJy) at the cluster centre of gravit y or at the locations of the any of the Chandra X-ray sources in the cluster. Based on the fundamental plane of accreting black holes which is a relationship between X-ray luminosity, radio luminosity and black hole mass, we place an upper limit of 1500 M_sun on the mass of the putative intermediate-mass black hole located at the centre of NGC 6388. We discuss the uncertainties of this upper limit and the previously suggested black hole mass of 5700 M_sun based on surface density profile analysis.
From direct observations of the longitudinal development of ultra-high energy air showers performed with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray photons above 2 , 3, 5 and 10 EeV (1 EeV = 10^18 eV) respectively. These are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results complement previous constraints on top-down models from array data and they reduce systematic uncertainties in the interpretation of shower data in terms of primary flux, nuclear composition and proton-air cross-section.
The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei (AGN) with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope (LAT) result.
The White Mountain Polarimeter (WMPol) is a dedicated ground-based microwave telescope and receiver system for observing polarization of the Cosmic Microwave Background. WMPol is located at an altitude of 3880 meters on a plateau in the White Mountai ns of Eastern California, USA, at the Barcroft Facility of the University of California White Mountain Research Station. Presented here is a description of the instrument and the data collected during April through October 2004. We set an upper limit on $E$-mode polarization of 14 $mumathrm{K}$ (95% confidence limit) in the multipole range $170<ell<240$. This result was obtained with 422 hours of observations of a 3 $mathrm{deg}^2$ sky area about the North Celestial Pole, using a 42 GHz polarimeter. This upper limit is consistent with $EE$ polarization predicted from a standard $Lambda$-CDM concordance model.
We report the MAXI observation of the gravitational-wave (GW) event GW170817 and the electromagnetic counterpart of GW170817. GW170817 is a binary neutron star coalescence candidate detected by the Advanced LIGO and Advanced Virgo detectors, and it i s the first event for which the optical counterpart has been discovered. In the MAXI observation, the Gas Slit Camera (GSC) covered approximately 62% of the sky region of the GW event within 90% probability during the first 92 min of orbit after the trigger. No significant X-ray transient was detected in the error region, and the upper limit of the average flux with a significance of 3 $sigma$ in the 2--10 keV band was 53/26 mCrab (one-orbit observation/one-day observation). In the optical counterpart of GW170817, the observational window of GSC at the position started at 20 s after the GW trigger, but the high voltage of GSC was unfortunately off at the time because the ISS was entering a high-particle-background region. The first observation of the position by GSC was eventually performed at 16797 sec (4.6 hours) since the GW trigger, yielding the 3 $sigma$ upper limit of 8.60$times$10$^{-9}$ erg cm$^{-2}$ s$^{-1}$ in the 2--10 keV band, though it was the earliest X-ray observation of the counterpart.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا