ﻻ يوجد ملخص باللغة العربية
We report the MAXI observation of the gravitational-wave (GW) event GW170817 and the electromagnetic counterpart of GW170817. GW170817 is a binary neutron star coalescence candidate detected by the Advanced LIGO and Advanced Virgo detectors, and it is the first event for which the optical counterpart has been discovered. In the MAXI observation, the Gas Slit Camera (GSC) covered approximately 62% of the sky region of the GW event within 90% probability during the first 92 min of orbit after the trigger. No significant X-ray transient was detected in the error region, and the upper limit of the average flux with a significance of 3 $sigma$ in the 2--10 keV band was 53/26 mCrab (one-orbit observation/one-day observation). In the optical counterpart of GW170817, the observational window of GSC at the position started at 20 s after the GW trigger, but the high voltage of GSC was unfortunately off at the time because the ISS was entering a high-particle-background region. The first observation of the position by GSC was eventually performed at 16797 sec (4.6 hours) since the GW trigger, yielding the 3 $sigma$ upper limit of 8.60$times$10$^{-9}$ erg cm$^{-2}$ s$^{-1}$ in the 2--10 keV band, though it was the earliest X-ray observation of the counterpart.
We searched for X-ray candidates of the gravitational wave (GW) event GW150914 with Monitor of All-sky X-ray Image (MAXI). MAXI observed the error region of the GW event GW150914 from 4 minutes after the event and covered about 90% of the error regio
The error region of the the gravitational-wave (GW) event GW151226 was observed with Monitor of All-sky X-ray Image (MAXI). MAXI was operated at the time of GW151226, and continuously observed to 4 minutes after the event. MAXI covered about 84% of t
During the second observing run of the Laser Interferometer gravitational- wave Observatory (LIGO) and Virgo Interferometer, a gravitational-wave signal consistent with a binary neutron star coalescence was detected on 2017 August 17th (GW170817), qu
The first detected gravitational wave from a neutron star merger was GW170817. In this study, we present J-GEM follow-up observations of SSS17a, an electromagnetic counterpart of GW170817. SSS17a shows a 2.5-mag decline in the $z$-band from 1.7 days
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up obs