ﻻ يوجد ملخص باللغة العربية
In this paper we review the derivation of light bending obtained before the discovery of General Relativity (GR). It is intended for students learning GR or specialist that will find new lights and connexions on these historic derivations. Since 1915, it is well known that the observed light bending stems from two contributions : the first one is directly deduced from the equivalence principle alone and was obtained by Einstein in 1911; the second one comes from the spatial curvature of spacetime. In GR, those two components are equal, but other relativistic theories of gravitation can give different values to those contributions. In this paper, we give a simple explanation, based on the wave-particle picture of why the first term, which relies on the equivalence principle, is identical to the one obtained by a purely Newtonian analysis. In this context of wave analysis, we emphasize that the dependency of the velocity of light with the gravitational potential, as deduced by Einstein concerns the phase velocity. Then, we wonder whether Einstein could have envisaged already in 1911 the second contribution, and therefore the correct result. We argue that considering a length contraction in the radial direction, along with the time dilation implied by the equivalence principle, could have led Einstein to the correct result.
Local gravitational theories with more than four derivatives have remarkable quantum properties, e.g., they are super-renormalizable and may be unitary in the Lee-Wick sense. Therefore, it is important to explore also the IR limit of these theories a
We discuss a possible extension of calculations of the bending angle of light in a static, spherically symmetric and asymptotically flat spacetime to a non-asymptotically flat case. We examine a relation between the bending angle of light and the Gau
Continuing work initiated in an earlier publication [Ishihara, Suzuki, Ono, Kitamura, Asada, Phys. Rev. D {bf 94}, 084015 (2016) ], we discuss a method of calculating the bending angle of light in a static, spherically symmetric and asymptotically fl
In this paper we study the light bending caused by a slowly rotating source in the context of quadratic theories of gravity, in which the Einstein--Hilbert action is extended by additional terms quadratic in the curvature tensors. The deflection angl
Acoustic black hole is becoming an attractive topic in recent years, for it open-up new direction for experimental explorations of black holes in laboratories. In this work, the gravitational bending of acoustic Schwarzschild black hole is investigat