ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain Adversarial Training for Accented Speech Recognition

124   0   0.0 ( 0 )
 نشر من قبل Lei Xie
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a domain adversarial training (DAT) algorithm to alleviate the accented speech recognition problem. In order to reduce the mismatch between labeled source domain data (standard accent) and unlabeled target domain data (with heavy accents), we augment the learning objective for a Kaldi TDNN network with a domain adversarial training (DAT) objective to encourage the model to learn accent-invariant features. In experiments with three Mandarin accents, we show that DAT yields up to 7.45% relative character error rate reduction when we do not have transcriptions of the accented speech, compared with the baseline trained on standard accent data only. We also find a benefit from DAT when used in combination with training from automatic transcriptions on the accented data. Furthermore, we find that DAT is superior to multi-task learning for accented speech recognition.



قيم البحث

اقرأ أيضاً

This paper explores the use of adversarial examples in training speech recognition systems to increase robustness of deep neural network acoustic models. During training, the fast gradient sign method is used to generate adversarial examples augmenti ng the original training data. Different from conventional data augmentation based on data transformations, the examples are dynamically generated based on current acoustic model parameters. We assess the impact of adversarial data augmentation in experiments on the Aurora-4 and CHiME-4 single-channel tasks, showing improved robustness against noise and channel variation. Further improvement is obtained when combining adversarial examples with teacher/student training, leading to a 23% relative word error rate reduction on Aurora-4.
Neural network based speech recognition systems suffer from performance degradation due to accented speech, especially unfamiliar accents. In this paper, we study the supervised contrastive learning framework for accented speech recognition. To build different views (similar positive data samples) for contrastive learning, three data augmentation techniques including noise injection, spectrogram augmentation and TTS-same-sentence generation are further investigated. From the experiments on the Common Voice dataset, we have shown that contrastive learning helps to build data-augmentation invariant and pronunciation invariant representations, which significantly outperforms traditional joint training methods in both zero-shot and full-shot settings. Experiments show that contrastive learning can improve accuracy by 3.66% (zero-shot) and 3.78% (full-shot) on average, comparing to the joint training method.
In real-life applications, the performance of speaker recognition systems always degrades when there is a mismatch between training and evaluation data. Many domain adaptation methods have been successfully used for eliminating the domain mismatches in speaker recognition. However, usually both training and evaluation data themselves can be composed of several subsets. These inner variances of each dataset can also be considered as different domains. Different distributed subsets in source or target domain dataset can also cause multi-domain mismatches, which are influential to speaker recognition performance. In this study, we propose to use adversarial training for multi-domain speaker recognition to solve the domain mismatch and the dataset variance problems. By adopting the proposed method, we are able to obtain both multi-domain-invariant and speaker-discriminative speech representations for speaker recognition. Experimental results on DAC13 dataset indicate that the proposed method is not only effective to solve the multi-domain mismatch problem, but also outperforms the compared unsupervised domain adaptation methods.
On-device speech recognition requires training models of different sizes for deploying on devices with various computational budgets. When building such different models, we can benefit from training them jointly to take advantage of the knowledge sh ared between them. Joint training is also efficient since it reduces the redundancy in the training procedures data handling operations. We propose a method for collaboratively training acoustic encoders of different sizes for speech recognition. We use a sequence transducer setup where different acoustic encoders share a common predictor and joiner modules. The acoustic encoders are also trained using co-distillation through an auxiliary task for frame level chenone prediction, along with the transducer loss. We perform experiments using the LibriSpeech corpus and demonstrate that the collaboratively trained acoustic encoders can provide up to a 11% relative improvement in the word error rate on both the test partitions.
In this paper we proposed a novel Adversarial Training (AT) approach for end-to-end speech recognition using a Criticizing Language Model (CLM). In this way the CLM and the automatic speech recognition (ASR) model can challenge and learn from each ot her iteratively to improve the performance. Since the CLM only takes the text as input, huge quantities of unpaired text data can be utilized in this approach within end-to-end training. Moreover, AT can be applied to any end-to-end ASR model using any deep-learning-based language modeling frameworks, and compatible with any existing end-to-end decoding method. Initial results with an example experimental setup demonstrated the proposed approach is able to gain consistent improvements efficiently from auxiliary text data under different scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا