ﻻ يوجد ملخص باللغة العربية
Sign problems in path integrals arise when different field configurations contribute with different signs or phases. Phase unwrapping describes a family of signal processing techniques in which phase differences between elements of a time series are integrated to construct non-compact unwrapped phase differences. By combining phase unwrapping with a cumulant expansion, path integrals with sign problems arising from phase fluctuations can be systematically approximated as linear combinations of path integrals without sign problems. This work explores phase unwrapping in zero-plus-one-dimensional complex scalar field theory. Results with improved signal-to-noise ratios for the spectrum of scalar field theory can be obtained from unwrapped phases, but the size of cumulant expansion truncation errors is found to be undesirably sensitive to the parameters of the phase unwrapping algorithm employed. It is argued that this numerical sensitivity arises from discretization artifacts that become large when phases fluctuate close to singularities of a complex logarithm in the definition of the unwrapped phase.
We study the nature of the phase diagram of three-dimensional lattice models in the presence of nonabelian gauge symmetries. In particular, we consider a paradigmatic model for the Higgs mechanism, lattice scalar chromodynamics with N_f flavors, char
The fermion bag approach is a new method to tackle fermion sign problems in lattice field theories. Using this approach it is possible to solve a class of sign problems that seem unsolvable by traditional methods. The new solutions emerge when partit
This an English translation of a review of finite-density lattice QCD. The original version in Japanese appeared in Soryushiron Kenkyu Vol 31 (2020) No. 1.
We construct four kinds of Z3-symmetric three-dimentional (3-d) Potts models, each with different number of states at each site on a 3-d lattice, by extending the 3-d three-state Potts model. Comparing the ordinary Potts model with the four Z3-symmet
We consider the two-dimensional classical XY model on a square lattice in the thermodynamic limit using tensor renormalization group and precisely determine the critical temperature corresponding to the Berezinskii-Kosterlitz-Thouless (BKT) phase tra