ﻻ يوجد ملخص باللغة العربية
A massive vector boson field in the vicinity of a rotating black hole is known to suffer an instability, due to the exponential amplification of (co-rotating, low-frequency) bound states by black hole superradiance. Here we calculate the bound state spectrum by exploiting the separation of variables recently achieved by Frolov, Krtous, Kubiznak and Santos (FKKS) for the Proca field on Kerr-(A)dS-NUT spacetimes of arbitrary dimension. Restricting to the 4D Kerr case, we first establish the relationship between the FKKS and Teukolsky variables in the massless case; obtain exact results for the angular eigenvalues in the marginally-bound case; and present a spectral method for solving the angular equation in the general case. We demonstrate that all three physical polarizations can be recovered from the FKKS ansatz, resolving an open question. We present numerical results for the instability growth rate for a selection of modes of all three polarizations, and discuss physical implications.
We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of i
We investigate the late-time tail of the retarded Green function for the dynamics of a linear field perturbation of Kerr spacetime. We develop an analytical formalism for obtaining the late-time tail up to arbitrary order for general integer spin of
We consider radiative processes of an atom in a rotating black-hole background. We assume the atom, represented by a hypothetical two-level system, is coupled via a monopole interaction with a massless quantum scalar field prepared in each one of the
We analyze the constraints of gauge theories on Kerr and Kerr-de Sitter spacetimes, which contain one or more horizons. We find that the constraints are modified on such backgrounds through the presence of additional surface terms at the horizons. As
We present an exhaustive numerical investigation of the optical caustics in gravitational lensing by a spinning black hole for an observer at infinity. Besides the primary caustic, we examine higher order caustics, formed by photons performing one or