ﻻ يوجد ملخص باللغة العربية
We compute dual-conformally invariant ladder integrals that are capped off by pentagons at each end of the ladder. Such integrals appear in six-point amplitudes in planar N=4 super-Yang-Mills theory. We provide exact, finite-coupling formulas for the basic double pentaladder integrals as a single Mellin integral over hypergeometric functions. For particular choices of the dual conformal cross ratios, we can evaluate the integral at weak coupling to high loop orders in terms of multiple polylogarithms. We argue that the integrals are exponentially suppressed at strong coupling. We describe the space of functions that contains all such double pentaladder integrals and their derivatives, or coproducts. This space, a prototype for the space of Steinmann hexagon functions, has a simple algebraic structure, which we elucidate by considering a particular discontinuity of the functions that localizes the Mellin integral and collapses the relevant symbol alphabet. This function space is endowed with a coaction, both perturbatively and at finite coupling, which mixes the independent solutions of the hypergeometric differential equation and constructively realizes a coaction principle of the type believed to hold in the full Steinmann hexagon function space.
We present a systematic implementation of differential renormalization to all orders in perturbation theory. The method is applied to individual Feynamn graphs written in coordinate space. After isolating every singularity. which appears in a bare di
We construct the general effective field theory of gravity coupled to the Standard Model of particle physics, which we name GRSMEFT. Our method allows the systematic derivation of a non-redundant set of operators of arbitrary dimension with generic f
We propose two novel formulations of the hopping parameter expansion for finite density QCD using Wilson fermions, while keeping the gauge action intact. We use the complex Langevin equation to circumvent the sign problem in the theory. We perform si
The heavy ion cross section for continuum e+ e- pair production has been calculated to all orders in Z alpha. Comparison is made with available CERN SPS and RHIC STAR data. Computed cross sections are found to be reduced from perturbation theory with
The counting of the dimension of the space of $U(N) times U(N) times U(N)$ polynomial invariants of a complex $3$-index tensor as a function of degree $n$ is known in terms of a sum of squares of Kronecker coefficients. For $n le N$, the formula can