ﻻ يوجد ملخص باللغة العربية
The counting of the dimension of the space of $U(N) times U(N) times U(N)$ polynomial invariants of a complex $3$-index tensor as a function of degree $n$ is known in terms of a sum of squares of Kronecker coefficients. For $n le N$, the formula can be expressed in terms of a sum of symmetry factors of partitions of $n$ denoted $Z_3(n)$. We derive the large $n$ all-orders asymptotic formula for $ Z_3(n)$ making contact with high order results previously obtained numerically. The derivation relies on the dominance in the sum, of partitions with many parts of length $1$. The dominance of other small parts in restricted partition sums leads to related asymptotic results. The result for the $3$-index tensor observables gives the large $n$ asymptotic expansion for the counting of bipartite ribbon graphs with $n$ edges, and for the dimension of the associated Kronecker permutation centralizer algebra. We explain how the different terms in the asymptotics are associated with probability distributions over ribbon graphs. The large $n$ dominance of small parts also leads to conjectured formulae for the asymptotics of invariants for general $d$-index tensors. The coefficients of $ 1/n$ in these expansions involve Stirling numbers of the second kind along with restricted partition sums.
We study two types of probability measures on the set of integer partitions of $n$ with at most $m$ parts. The first one chooses the random partition with a chance related to its largest part only. We then obtain the limiting distributions of all of
We study measures of quantum information when the space spanned by the set of accessible observables is not closed under products, i.e., we consider systems where an observer may be able to measure the expectation values of two operators, $langle O_1
We propose to use tensor diagrams and the Fomin-Pylyavskyy conjectures to explore the connection between symbol alphabets of $n$-particle amplitudes in planar $mathcal{N}=4$ Yang-Mills theory and certain polytopes associated to the Grassmannian G(4,
After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative o
We present a systematic implementation of differential renormalization to all orders in perturbation theory. The method is applied to individual Feynamn graphs written in coordinate space. After isolating every singularity. which appears in a bare di