ترغب بنشر مسار تعليمي؟ اضغط هنا

Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise

269   0   0.0 ( 0 )
 نشر من قبل Sebastian Weichwald
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce coroICA, confounding-robust independent component analysis, a novel ICA algorithm which decomposes linearly mixed multivariate observations into independent components that are corrupted (and rendered dependent) by hidden group-wise stationary confounding. It extends the ordinary ICA model in a theoretically sound and explicit way to incorporate group-wise (or environment-wise) confounding. We show that our proposed general noise model allows to perform ICA in settings where other noisy ICA procedures fail. Additionally, it can be used for applications with grouped data by adjusting for different stationary noise within each group. Our proposed noise model has a natural relation to causality and we explain how it can be applied in the context of causal inference. In addition to our theoretical framework, we provide an efficient estimation procedure and prove identifiability of the unmixing matrix under mild assumptions. Finally, we illustrate the performance and robustness of our method on simulated data, provide audible and visual examples, and demonstrate the applicability to real-world scenarios by experiments on publicly available Antarctic ice core data as well as two EEG data sets. We provide a scikit-learn compatible pip-installable Python package coroICA as well as R and Matlab implementations accompanied by a documentation at https://sweichwald.de/coroICA/



قيم البحث

اقرأ أيضاً

Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of v oxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering. In this research, we used the recently developed diffusion map for dimensionality reduction in conjunction with spectral clustering. This research revealed that the diffusion map based clustering worked as well as the more traditional methods, and produced more compact clusters when needed.
The nonlinear vector autoregressive (NVAR) model provides an appealing framework to analyze multivariate time series obtained from a nonlinear dynamical system. However, the innovation (or error), which plays a key role by driving the dynamics, is al most always assumed to be additive. Additivity greatly limits the generality of the model, hindering analysis of general NVAR processes which have nonlinear interactions between the innovations. Here, we propose a new general framework called independent innovation analysis (IIA), which estimates the innovations from completely general NVAR. We assume mutual independence of the innovations as well as their modulation by an auxiliary variable (which is often taken as the time index and simply interpreted as nonstationarity). We show that IIA guarantees the identifiability of the innovations with arbitrary nonlinearities, up to a permutation and component-wise invertible nonlinearities. We also propose three estimation frameworks depending on the type of the auxiliary variable. We thus provide the first rigorous identifiability result for general NVAR, as well as very general tools for learning such models.
The robust PCA of covariance matrices plays an essential role when isolating key explanatory features. The currently available methods for performing such a low-rank plus sparse decomposition are matrix specific, meaning, those algorithms must re-run for every new matrix. Since these algorithms are computationally expensive, it is preferable to learn and store a function that instantaneously performs this decomposition when evaluated. Therefore, we introduce Denise, a deep learning-based algorithm for robust PCA of covariance matrices, or more generally of symmetric positive semidefinite matrices, which learns precisely such a function. Theoretical guarantees for Denise are provided. These include a novel universal approximation theorem adapted to our geometric deep learning problem, convergence to an optimal solution of the learning problem and convergence of the training scheme. Our experiments show that Denise matches state-of-the-art performance in terms of decomposition quality, while being approximately 2000x faster than the state-of-the-art, PCP, and 200x faster than the current speed optimized method, fast PCP.
Compositional data represent a specific family of multivariate data, where the information of interest is contained in the ratios between parts rather than in absolute values of single parts. The analysis of such specific data is challenging as the a pplication of standard multivariate analysis tools on the raw observations can lead to spurious results. Hence, it is appropriate to apply certain transformations prior further analysis. One popular multivariate data analysis tool is independent component analysis. Independent component analysis aims to find statistically independent components in the data and as such might be seen as an extension to principal component analysis. In this paper we examine an approach of how to apply independent component analysis on compositional data by respecting the nature of the former and demonstrate the usefulness of this procedure on a metabolomic data set.
Independent component analysis (ICA) has been widely used for blind source separation in many fields such as brain imaging analysis, signal processing and telecommunication. Many statistical techniques based on M-estimates have been proposed for esti mating the mixing matrix. Recently, several nonparametric methods have been developed, but in-depth analysis of asymptotic efficiency has not been available. We analyze ICA using semiparametric theories and propose a straightforward estimate based on the efficient score function by using B-spline approximations. The estimate is asymptotically efficient under moderate conditions and exhibits better performance than standard ICA methods in a variety of simulations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا