ترغب بنشر مسار تعليمي؟ اضغط هنا

Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices

105   0   0.0 ( 0 )
 نشر من قبل Calypso Herrera
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The robust PCA of covariance matrices plays an essential role when isolating key explanatory features. The currently available methods for performing such a low-rank plus sparse decomposition are matrix specific, meaning, those algorithms must re-run for every new matrix. Since these algorithms are computationally expensive, it is preferable to learn and store a function that instantaneously performs this decomposition when evaluated. Therefore, we introduce Denise, a deep learning-based algorithm for robust PCA of covariance matrices, or more generally of symmetric positive semidefinite matrices, which learns precisely such a function. Theoretical guarantees for Denise are provided. These include a novel universal approximation theorem adapted to our geometric deep learning problem, convergence to an optimal solution of the learning problem and convergence of the training scheme. Our experiments show that Denise matches state-of-the-art performance in terms of decomposition quality, while being approximately 2000x faster than the state-of-the-art, PCP, and 200x faster than the current speed optimized method, fast PCP.



قيم البحث

اقرأ أيضاً

Principal component analysis (PCA) is recognised as a quintessential data analysis technique when it comes to describing linear relationships between the features of a dataset. However, the well-known sensitivity of PCA to non-Gaussian samples and/or outliers often makes it unreliable in practice. To this end, a robust formulation of PCA is derived based on the maximum correntropy criterion (MCC) so as to maximise the expected likelihood of Gaussian distributed reconstruction errors. In this way, the proposed solution reduces to a generalised power iteration, whereby: (i) robust estimates of the principal components are obtained even in the presence of outliers; (ii) the number of principal components need not be specified in advance; and (iii) the entire set of principal components can be obtained, unlike existing approaches. The advantages of the proposed maximum correntropy power iteration (MCPI) are demonstrated through an intuitive numerical example.
Robust principal component analysis (RPCA) is a widely used tool for dimension reduction. In this work, we propose a novel non-convex algorithm, coined Iterated Robust CUR (IRCUR), for solving RPCA problems, which dramatically improves the computatio nal efficiency in comparison with the existing algorithms. IRCUR achieves this acceleration by employing CUR decomposition when updating the low rank component, which allows us to obtain an accurate low rank approximation via only three small submatrices. Consequently, IRCUR is able to process only the small submatrices and avoid expensive computing on the full matrix through the entire algorithm. Numerical experiments establish the computational advantage of IRCUR over the state-of-art algorithms on both synthetic and real-world datasets.
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any b lack-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependence on the number of top principal components. We show that it can be used to give a fast iterative method for the popular principal component regression problem, giving the first major runtime improvement over the naive method of combining PCA with regression. To achieve our results, we first observe that ridge regression can be used to obtain a smooth projection onto the top principal components. We then sharpen this approximation to true projection using a low-degree polynomial approximation to the matrix step function. Step function approximation is a topic of long-term interest in scientific computing. We extend prior theory by constructing polynomials with simple iterative structure and rigorously analyzing their behavior under limited precision.
Fan et al. [$mathit{Annals}$ $mathit{of}$ $mathit{Statistics}$ $textbf{47}$(6) (2019) 3009-3031] proposed a distributed principal component analysis (PCA) algorithm to significantly reduce the communication cost between multiple servers. In this pape r, we robustify their distributed algorithm by using robust covariance matrix estimators respectively proposed by Minsker [$mathit{Annals}$ $mathit{of}$ $mathit{Statistics}$ $textbf{46}$(6A) (2018) 2871-2903] and Ke et al. [$mathit{Statistical}$ $mathit{Science}$ $textbf{34}$(3) (2019) 454-471] instead of the sample covariance matrix. We extend the deviation bound of robust covariance estimators with bounded fourth moments to the case of the heavy-tailed distribution under only bounded $2+epsilon$ moments assumption. The theoretical results show that after the shrinkage or truncation treatment for the sample covariance matrix, the statistical error rate of the final estimator produced by the robust algorithm is the same as that of sub-Gaussian tails, when $epsilon geq 2$ and the sampling distribution is symmetric innovation. While $2 > epsilon >0$, the rate with respect to the sample size of each server is slower than that of the bounded fourth moment assumption. Extensive numerical results support the theoretical analysis, and indicate that the algorithm performs better than the original distributed algorithm and is robust to heavy-tailed data and outliers.
117 - Minghua Lin 2016
We bring in some new notions associated with $2times 2$ block positive semidefinite matrices. These notions concern the inequalities between the singular values of the off diagonal blocks and the eigenvalues of the arithmetic mean or geometric mean o f the diagonal blocks. We investigate some relations between them. Many examples are included to illustrate these relations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا