ﻻ يوجد ملخص باللغة العربية
Evacuation in emergency situations can be modeled by a dynamic flow network. Two criteria have been used before: one is the evacuation completion time and the other is the aggregate evacuation time of individual evacuees. The aim of this paper is to optimize the aggregate evacuation time in the simplest case, where the network is a path and only one evacuation center (called a sink) is to be introduced. The evacuees are initially located at the vertices, but their precise numbers are unknown, and are given by upper and lower bounds. Under this assumption, we compute the sink location that minimizes the maximum regret. We present an $O(n^2log n)$ time algorithm to solve this problem, improving upon the previously fastest $O(n^3)$ time algorithm, where $n$ is the number of vertices.
We consider the problem of locating a set of $k$ sinks on a path network with general edge capacities that minimizes the sum of the evacuation times of all evacuees. We first present an $O(knlog^4n)$ time algorithm when the edge capacities are non-un
We present a novel approach to finding the $k$-sink on dynamic path networks with general edge capacities. Our first algorithm runs in $O(n log n + k^2 log^4 n)$ time, where $n$ is the number of vertices on the given path, and our second algorithm ru
This paper considers the minimax regret 1-median problem in dynamic path networks. In our model, we are given a dynamic path network consisting of an undirected path with positive edge lengths, uniform positive edge capacity, and nonnegative vertex s
This paper considers the k-sink location problem in dynamic path networks. In our model, a dynamic path network consists of an undirected path with positive edge lengths, uniform edge capacity, and positive vertex supplies. Here, each vertex supply c
A dynamic network ${cal N} = (G,c,tau,S)$ where $G=(V,E)$ is a graph, integers $tau(e)$ and $c(e)$ represent, for each edge $ein E$, the time required to traverse edge $e$ and its nonnegative capacity, and the set $Ssubseteq V$ is a set of sources. I