ﻻ يوجد ملخص باللغة العربية
A dynamic network ${cal N} = (G,c,tau,S)$ where $G=(V,E)$ is a graph, integers $tau(e)$ and $c(e)$ represent, for each edge $ein E$, the time required to traverse edge $e$ and its nonnegative capacity, and the set $Ssubseteq V$ is a set of sources. In the $k$-{sc Sink Location} problem, one is given as input a dynamic network ${cal N}$ where every source $uin S$ is given a nonnegative supply value $sigma(u)$. The task is then to find a set of sinks $X = {x_1,ldots,x_k}$ in $G$ that minimizes the routing time of all supply to $X$. Note that, in the case where $G$ is an undirected graph, the optimal position of the sinks in $X$ needs not be at vertices, and can be located along edges. Hoppe and Tardos showed that, given an instance of $k$-{sc Sink Location} and a set of $k$ vertices $Xsubseteq V$, one can find an optimal routing scheme of all the supply in $G$ to $X$ in polynomial time, in the case where graph $G$ is directed. Note that when $G$ is directed, this suffices to obtain polynomial-time solvability of the $k$-{sc Sink Location} problem, since any optimal position will be located at vertices of $G$. However, the computational complexity of the $k$-{sc Sink Location} problem on general undirected graphs is still open. In this paper, we show that the $k$-{sc Sink Location} problem admits a fully polynomial-time approximation scheme (FPTAS) for every fixed $k$, and that the problem is $W[1]$-hard when parameterized by $k$.
We consider the problem of locating a set of $k$ sinks on a path network with general edge capacities that minimizes the sum of the evacuation times of all evacuees. We first present an $O(knlog^4n)$ time algorithm when the edge capacities are non-un
We introduce the combinatorial optimization problem Time Disjoint Walks (TDW), which has applications in collision-free routing of discrete objects (e.g., autonomous vehicles) over a network. This problem takes as input a digraph $G$ with positive in
We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the pr
This paper considers the k-sink location problem in dynamic path networks. In our model, a dynamic path network consists of an undirected path with positive edge lengths, uniform edge capacity, and positive vertex supplies. Here, each vertex supply c
We present a novel approach to finding the $k$-sink on dynamic path networks with general edge capacities. Our first algorithm runs in $O(n log n + k^2 log^4 n)$ time, where $n$ is the number of vertices on the given path, and our second algorithm ru