ﻻ يوجد ملخص باللغة العربية
The $b$-Whittaker functions are eigenfunctions of the modular $q$-deformed $mathfrak{gl}_n$ open Toda system introduced by Kharchev, Lebedev, and Semenov-Tian-Shansky. Using the quantum inverse scattering method, the named authors obtained a Mellin-Barnes integral representation for these eigenfunctions. In the present paper, we develop the analytic theory of the $b$-Whittaker functions from the perspective of quantum cluster algebras. We obtain a formula for the modular open Toda systems Baxter operator as a sequence of quantum cluster transformations, and thereby derive a new modular $b$-analog of Giventals integral formula for the undeformed Whittaker function. We also show that the $b$-Whittaker functions are eigenvectors of the Dehn twist operator from quantum higher Teichmuller theory, and obtain $b$-analogs of various integral identities satisfied by the undeformed Whittaker functions, including the continuous Cauchy-Littlewood identity of Stade and Corwin-OConnell-Seppalainen-Zygouras. Using these results, we prove the unitarity of the $b$-Whittaker transform, thereby completing the analytic part of the proof of the conjecture of Frenkel and Ip on tensor products of positive representations of $U_q(mathfrak{sl}_n)$, as well as the main step in the modular functor conjecture of Fock and Goncharov. We conclude by explaining how the theory of $b$-Whittaker functions can be used to derive certain hyperbolic hypergeometric integral evaluations found by Rains.
In this paper we consider Iwahori Whittaker functions on $n$-fold metaplectic covers $widetilde{G}$ of $mathbf{G}(F)$ with $mathbf{G}$ a split reductive group over a non-archimedean local field $F$. For every element $phi$ of a basis of Iwahori Whitt
We show that spherical Whittaker functions on an $n$-fold cover of the general linear group arise naturally from the quantum Fock space representation of $U_q(widehat{mathfrak{sl}}(n))$ introduced by Kashiwara, Miwa and Stern (KMS). We arrive at this
We find a formula to compute the number of the generators, which generate the $n$-filtered space of Hopf algebra of rooted trees, i.e. the number of equivalent classes of rooted trees with weight $n$. Applying Hopf algebra of rooted trees, we show th
Using the formalism of quantizers and dequantizers, we show that the characters of irreducible unitary representations of finite and compact groups provide kernels for star products of complex-valued functions of the group elements. Examples of permu
This paper is a response to an article (R. de la Madrid, Journal of Physics A: Mathematical and General, 39,9255-9268 (2006)) recently published in Journal of Physics A: Mathematical and Theoretical. The article claims that the theory of resonances a