ﻻ يوجد ملخص باللغة العربية
The Multigap Resistive Plate Chambers (MRPC) are used as a timing detector in several particle physics and cosmic ray experiments. The gas mixture of MRPC at current experiments is a mixture containing $rm C_2F_4H_2$ and in some cases $rm SF_6$. $rm C_2F_4H_2$ and $rm SF_6$ have a Global Warming Potential (GWP) of 1430 and 23900 respectively, therefore they are classified as greenhouse gases. The studies to reduce the amount of emission of the greenhouse gas in high energy experiments are underway; the present contribution has been performed as part of this effort. The results have been obtained from the beam test of a small MRPC which has 6 gaps of 220 $mu$m and an sensitive area of 20 $times$ 20 cm$^2$. It has been operated with the ecological HFO-1234ze gas ($rm C_3F_4H_2$), and with the $rm C_2F_4H_2/SF_6$ mixture. We have found that the ecological gas can substitute for the $rm C_2F_4H_2$-based gas mixture without significantly compromising the current level of performance.
Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.
The ATLAS RPC standard mixture, mainly based on C$_{2}$H$_{2}$F$_{4}$, has a high Global Warming Potential (GWP) and therefore the search for RPC eco friendly gases is mandatory. In this work we present the results on the detector performances in ter
Resistive Plate Chambers (RPCs), used for the Muon Spectrometer of the ALICE experiment at CERN LHC, are currently operated in maxi-avalanche mode with a low threshold value and without amplification in the front-end electronics. RPC detectors have s
Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.
In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, toget