ترغب بنشر مسار تعليمي؟ اضغط هنا

Test of High Time Resolution MRPC with Different Readout Modes

492   0   0.0 ( 0 )
 نشر من قبل Shuai Yang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to further enhance the particle identification capability of the Beijing Spectrometer (BESIII), it is proposed to upgrade the current end-cap time-of-flight (eTOF) detector with multi-gap resistive plate chamber (MRPC). The prototypes, together with the front end electronics (FEE) and time digitizer (TDIG) module have been tested at the E3 line of Beijing Electron Positron Collider (BEPCII) to study the difference between the single and double-end readout MRPC designs. The time resolutions (sigma) of the single-end readout MRPC are 47/53 ps obtained by 600 MeV/c proton/pion beam, while that of the double-end readout MRPC is 40 ps (proton beam). The efficiencies of three MRPC modules tested by both proton and pion beam are better than 98%. For the double-end readout MRPC, no incident position dependence is observed.



قيم البحث

اقرأ أيضاً

In order to test the performance of detector/prototype in environment of laboratory, we design and build a larger area ($90times52$ $cm^2$) test platform of cosmic ray based on well-designed Multi-gap Resistive Plate Chamber (MRPC) with an excellent time resolution and a high detection efficiency for the minimum ionizing particles (MIPs). The time resolution of the MRPC module used is tested to be ~80 ps, and the position resolution along the strip is ~5 mm, while the position resolution perpendicular to the strip is ~12.7 mm. The platform constructed by four MRPC modules can be functional for tracking the cosmic rays with a spatial resolution ~6.3 mm, and provide a reference time ~40 ps.
Multi-gap RPC prototypes with readout on a multi-strip electrode were developed for the small polar angle region of the CBM-TOF subdetector, the most demanding zone in terms of granularity and counting rate. The prototypes are based on low resistivit y ($sim$10$^{10}$ $Omega$cm) glass electrodes for performing in high counting rate environment. The strip width/pitch size was chosen such to fulfill the impedance matching with the front-end electronics and the granularity requirements of the innermost zone of the CBM-TOF wall. The in-beam tests using secondary particles produced in heavy ion collisions on a Pb target at SIS18 - GSI Darmstadt and SPS - CERN were focused on the performance of the prototype in conditions similar to the ones expected at SIS100/FAIR. An efficiency larger than 98% and a system time resolution in the order of 70~-~80~ps were obtained in high counting rate and high multiplicity environment.
Measurements of proton-nucleus scattering and high resolution neutrino-nucleus interaction imaging are key to reduce neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has be en constructed and operated at Royal Holloway University of London and CERN as a first step in the development of a HPTPC capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment such as the Deep Underground Neutrino Experiment. In this paper we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout, using four CCD cameras, of signals from Am-241 sources.
A prototype of Multi-Wire Proportional Chambers (MWPC) has been fabricated for the study of its various characteristics. The detector contains gold-coated tungsten wires (20 $mu m$ diameter) on the anode frame, with a pitch of 2.8 mm. The gap between the anode and the cathode is 3 mm and the gap between anode and read-out is also 3 mm. Detailed study of MWPC in terms of gain, energy and timing resolution and efficiency measurements have been performed. The detector has been operated using Ar/CO$_{2}$ gas mixtures with 70:30 and 90:10 ratio. Energy spectrum of $^{55}$Fe X-ray source is obtained for the detector. The gain and energy resolution of the detector were calculated using X-ray spectrum. Time resolution is obtained $sim$10 ns.
A new timing detector measuring ~50 MeV/c positrons is under development for the MEG II experiment, aiming at a time resolution $sigma_t sim 30~mathrm{ps}$. The resolution is expected to be achieved by measuring each positron time with multiple count ers made of plastic scintillator readout by silicon photomultipliers (SiPMs). The purpose of this work is to demonstrate the time resolution for ~50 MeV/c positrons using prototype counters. Counters with dimensions of $90times 40times 5~mathrm{mm}^3$ readout by six SiPMs (three on each $40times 5~mathrm{mm}^2$ plane) were built with SiPMs from Hamamatsu Photonics and AdvanSiD and tested in a positron beam at the DA$Phi$NE Beam Test Facility. The time resolution was found to improve nearly as the square root of the number of counter hits. A time resolution $sigma_t=26.2pm1.3~mathrm{ps}$ was obtained with eight counters with Hamamatsu SiPMs. These results suggest that the design resolution is achievable in the MEG II experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا